凸函数广义k-g分数积分的几个不等式

S. Dragomir
{"title":"凸函数广义k-g分数积分的几个不等式","authors":"S. Dragomir","doi":"10.7153/FDC-2019-09-12","DOIUrl":null,"url":null,"abstract":". Let g be a strictly increasing function on ( a , b ) , having a continuous derivative g (cid:2) on ( a , b ) . For the Lebesgue integrable function f : ( a , b ) → C , we de fi ne the k-g-left-sided fractional integral of f by and the where the kernel k is de fi ned either on ( 0 , ∞ ) or on [ 0 , ∞ ) with complex values and integrable on any fi nite subinterval. In this paper we establish some trapezoid and Ostrowski type inequalities for the k - g fractional integrals of convex functions. Applications for Hermite-Hadamard type inequalities for generalized g -means and examples for Riemann-Liouville and exponential fractional integrals are also given. ∈ 0 , 1 ) the function k is de fi ned on , and : , . If de on , and K","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some inequalities for the generalized k-g-fractional integrals of convex functions\",\"authors\":\"S. Dragomir\",\"doi\":\"10.7153/FDC-2019-09-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let g be a strictly increasing function on ( a , b ) , having a continuous derivative g (cid:2) on ( a , b ) . For the Lebesgue integrable function f : ( a , b ) → C , we de fi ne the k-g-left-sided fractional integral of f by and the where the kernel k is de fi ned either on ( 0 , ∞ ) or on [ 0 , ∞ ) with complex values and integrable on any fi nite subinterval. In this paper we establish some trapezoid and Ostrowski type inequalities for the k - g fractional integrals of convex functions. Applications for Hermite-Hadamard type inequalities for generalized g -means and examples for Riemann-Liouville and exponential fractional integrals are also given. ∈ 0 , 1 ) the function k is de fi ned on , and : , . If de on , and K\",\"PeriodicalId\":135809,\"journal\":{\"name\":\"Fractional Differential Calculus\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Differential Calculus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/FDC-2019-09-12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Differential Calculus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/FDC-2019-09-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 设g是在(a, b)上的严格递增函数,在(a, b)上有连续导数g (cid:2)。对于Lebesgue可积函数f: (a, b)→C,我们定义了f by的k-g左侧分数积分,其中核k定义在(0,∞)或[0,∞)上具有复值且在任意有限子区间上可积。本文建立了凸函数的k - g分数阶积分的梯形不等式和Ostrowski型不等式。给出了广义g均值的Hermite-Hadamard型不等式的应用,以及Riemann-Liouville积分和指数分数积分的例子。∈0,1),则函数k定义为n,且:,。如果是,那么K
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some inequalities for the generalized k-g-fractional integrals of convex functions
. Let g be a strictly increasing function on ( a , b ) , having a continuous derivative g (cid:2) on ( a , b ) . For the Lebesgue integrable function f : ( a , b ) → C , we de fi ne the k-g-left-sided fractional integral of f by and the where the kernel k is de fi ned either on ( 0 , ∞ ) or on [ 0 , ∞ ) with complex values and integrable on any fi nite subinterval. In this paper we establish some trapezoid and Ostrowski type inequalities for the k - g fractional integrals of convex functions. Applications for Hermite-Hadamard type inequalities for generalized g -means and examples for Riemann-Liouville and exponential fractional integrals are also given. ∈ 0 , 1 ) the function k is de fi ned on , and : , . If de on , and K
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信