CSI-MIMO:室内Wi-Fi指纹系统

Yogita Chapre, A. Ignjatović, A. Seneviratne, Sanjay Jha
{"title":"CSI-MIMO:室内Wi-Fi指纹系统","authors":"Yogita Chapre, A. Ignjatović, A. Seneviratne, Sanjay Jha","doi":"10.1109/LCN.2014.6925773","DOIUrl":null,"url":null,"abstract":"Wi-Fi based fingerprinting systems, mostly utilize the Received Signal Strength Indicator (RSSI), which is known to be unreliable due to environmental and hardware effects. In this paper, we present a novel Wi-Fi fingerprinting system, exploiting the fine-grained information known as Channel State Information (CSI). The frequency diversity of CSI can be effectively utilized to represent a location in both frequency and spatial domain resulting in more accurate indoor localization. We propose a novel location signature CSI-MIMO that incorporates Multiple Input Multiple Output (MIMO) information and use both the magnitude and the phase of CSI of each sub-carrier. We experimentally evaluate the performance of CSI-MIMO fingerprinting using the k-nearest neighbor and the Bayes algorithm. The accuracy of the proposed CSI-MIMO is compared with Finegrained Indoor Fingerprinting System (FIFS) and a simple CSI-based system. The experimental result shows an accuracy improvement of 57% over FIFS with an accuracy of 0.95 meters.","PeriodicalId":143262,"journal":{"name":"39th Annual IEEE Conference on Local Computer Networks","volume":"R-28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"114","resultStr":"{\"title\":\"CSI-MIMO: Indoor Wi-Fi fingerprinting system\",\"authors\":\"Yogita Chapre, A. Ignjatović, A. Seneviratne, Sanjay Jha\",\"doi\":\"10.1109/LCN.2014.6925773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wi-Fi based fingerprinting systems, mostly utilize the Received Signal Strength Indicator (RSSI), which is known to be unreliable due to environmental and hardware effects. In this paper, we present a novel Wi-Fi fingerprinting system, exploiting the fine-grained information known as Channel State Information (CSI). The frequency diversity of CSI can be effectively utilized to represent a location in both frequency and spatial domain resulting in more accurate indoor localization. We propose a novel location signature CSI-MIMO that incorporates Multiple Input Multiple Output (MIMO) information and use both the magnitude and the phase of CSI of each sub-carrier. We experimentally evaluate the performance of CSI-MIMO fingerprinting using the k-nearest neighbor and the Bayes algorithm. The accuracy of the proposed CSI-MIMO is compared with Finegrained Indoor Fingerprinting System (FIFS) and a simple CSI-based system. The experimental result shows an accuracy improvement of 57% over FIFS with an accuracy of 0.95 meters.\",\"PeriodicalId\":143262,\"journal\":{\"name\":\"39th Annual IEEE Conference on Local Computer Networks\",\"volume\":\"R-28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"114\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"39th Annual IEEE Conference on Local Computer Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LCN.2014.6925773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"39th Annual IEEE Conference on Local Computer Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN.2014.6925773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 114

摘要

基于Wi-Fi的指纹识别系统,主要利用接收信号强度指示器(RSSI),由于环境和硬件的影响,它是不可靠的。在本文中,我们提出了一种新的Wi-Fi指纹系统,利用被称为信道状态信息(CSI)的细粒度信息。CSI的频率分集可以有效地在频域和空间域中表示位置,从而实现更精确的室内定位。我们提出了一种新的位置签名CSI-MIMO,它结合了多输入多输出(MIMO)信息,并同时利用了每个子载波的CSI的幅度和相位。我们利用k近邻和贝叶斯算法实验评估了CSI-MIMO指纹识别的性能。将该方法的精度与细粒度室内指纹识别系统(FIFS)和一个简单的基于csi的系统进行了比较。实验结果表明,在精度为0.95米的情况下,该方法的精度比FIFS提高了57%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CSI-MIMO: Indoor Wi-Fi fingerprinting system
Wi-Fi based fingerprinting systems, mostly utilize the Received Signal Strength Indicator (RSSI), which is known to be unreliable due to environmental and hardware effects. In this paper, we present a novel Wi-Fi fingerprinting system, exploiting the fine-grained information known as Channel State Information (CSI). The frequency diversity of CSI can be effectively utilized to represent a location in both frequency and spatial domain resulting in more accurate indoor localization. We propose a novel location signature CSI-MIMO that incorporates Multiple Input Multiple Output (MIMO) information and use both the magnitude and the phase of CSI of each sub-carrier. We experimentally evaluate the performance of CSI-MIMO fingerprinting using the k-nearest neighbor and the Bayes algorithm. The accuracy of the proposed CSI-MIMO is compared with Finegrained Indoor Fingerprinting System (FIFS) and a simple CSI-based system. The experimental result shows an accuracy improvement of 57% over FIFS with an accuracy of 0.95 meters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信