M Singaram, E KrishnaKumar, Chandraprasad, F. D. Shadrach, Gowtham Manoharan
{"title":"小型化角稳定的K和Ka波段双波段频率选择表面","authors":"M Singaram, E KrishnaKumar, Chandraprasad, F. D. Shadrach, Gowtham Manoharan","doi":"10.46532/978-81-950008-1-4_020","DOIUrl":null,"url":null,"abstract":"A single layer novel compact frequency selective surface which is used in reflector antenna is designed and simulated. The proposed unit cell reflects electromagnetic waves in K and Ka band with maximum reflection occurring at 22.62 GHz and 35.44 GHz respectively. The designed FSS find its application in satellite communication. A crossed dipole structure in center and two-legged structure in corners with square loop in each quadrant makes the FSS unit cell structure. The FSS is designed with oblique incidence for transverse electric and transverse magnetic polarization with return loss 0.3 dB in 22.62 GHz and less than 0.5 dB in 35.44 GHz. The proposed work shows frequency independence against oblique angle of incidence. The simulated result from CST microwave studio is compared with other similar works.","PeriodicalId":191913,"journal":{"name":"Innovations in Information and Communication Technology Series","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Miniaturized Angularly Stable Dual Band Frequency Selective Surface for K and Ka Band\",\"authors\":\"M Singaram, E KrishnaKumar, Chandraprasad, F. D. Shadrach, Gowtham Manoharan\",\"doi\":\"10.46532/978-81-950008-1-4_020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A single layer novel compact frequency selective surface which is used in reflector antenna is designed and simulated. The proposed unit cell reflects electromagnetic waves in K and Ka band with maximum reflection occurring at 22.62 GHz and 35.44 GHz respectively. The designed FSS find its application in satellite communication. A crossed dipole structure in center and two-legged structure in corners with square loop in each quadrant makes the FSS unit cell structure. The FSS is designed with oblique incidence for transverse electric and transverse magnetic polarization with return loss 0.3 dB in 22.62 GHz and less than 0.5 dB in 35.44 GHz. The proposed work shows frequency independence against oblique angle of incidence. The simulated result from CST microwave studio is compared with other similar works.\",\"PeriodicalId\":191913,\"journal\":{\"name\":\"Innovations in Information and Communication Technology Series\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innovations in Information and Communication Technology Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46532/978-81-950008-1-4_020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovations in Information and Communication Technology Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46532/978-81-950008-1-4_020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Miniaturized Angularly Stable Dual Band Frequency Selective Surface for K and Ka Band
A single layer novel compact frequency selective surface which is used in reflector antenna is designed and simulated. The proposed unit cell reflects electromagnetic waves in K and Ka band with maximum reflection occurring at 22.62 GHz and 35.44 GHz respectively. The designed FSS find its application in satellite communication. A crossed dipole structure in center and two-legged structure in corners with square loop in each quadrant makes the FSS unit cell structure. The FSS is designed with oblique incidence for transverse electric and transverse magnetic polarization with return loss 0.3 dB in 22.62 GHz and less than 0.5 dB in 35.44 GHz. The proposed work shows frequency independence against oblique angle of incidence. The simulated result from CST microwave studio is compared with other similar works.