动态完全未知的零和博弈的基于数据的事件触发控制

Yuling Liang, Jin Xing, Juan Zhang, Hanguang Su
{"title":"动态完全未知的零和博弈的基于数据的事件触发控制","authors":"Yuling Liang, Jin Xing, Juan Zhang, Hanguang Su","doi":"10.1109/ICCSIE55183.2023.10175289","DOIUrl":null,"url":null,"abstract":"In our design, we develop a model-free optimal control method of zero-sum games (ZSG) with unknown system dynamics under the event-triggered mechanism. Firstly, based on the adaptive dynamic programming (ADP), the optimal policies are obtained by solving the Hamilton-Jacobi-Issacs (HJI) equation. Secondly, a data-based optimal control approach is designed via integral reinforcement learning (IRL) algorithm. Moreover, to reduce the communication burden, an event-triggered IRL-based control method is proposed for ZSG of completely unknown system. The stability analysis is given via Lyapunov principle. Finally, a simulation example is illustrated to show the effectiveness of the designed algorithm.","PeriodicalId":391372,"journal":{"name":"2022 First International Conference on Cyber-Energy Systems and Intelligent Energy (ICCSIE)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Based Event-Triggered Control of Zero-Sum Games with Completely Unknown Dynamics\",\"authors\":\"Yuling Liang, Jin Xing, Juan Zhang, Hanguang Su\",\"doi\":\"10.1109/ICCSIE55183.2023.10175289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our design, we develop a model-free optimal control method of zero-sum games (ZSG) with unknown system dynamics under the event-triggered mechanism. Firstly, based on the adaptive dynamic programming (ADP), the optimal policies are obtained by solving the Hamilton-Jacobi-Issacs (HJI) equation. Secondly, a data-based optimal control approach is designed via integral reinforcement learning (IRL) algorithm. Moreover, to reduce the communication burden, an event-triggered IRL-based control method is proposed for ZSG of completely unknown system. The stability analysis is given via Lyapunov principle. Finally, a simulation example is illustrated to show the effectiveness of the designed algorithm.\",\"PeriodicalId\":391372,\"journal\":{\"name\":\"2022 First International Conference on Cyber-Energy Systems and Intelligent Energy (ICCSIE)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 First International Conference on Cyber-Energy Systems and Intelligent Energy (ICCSIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSIE55183.2023.10175289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 First International Conference on Cyber-Energy Systems and Intelligent Energy (ICCSIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSIE55183.2023.10175289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在我们的设计中,我们开发了一种在事件触发机制下具有未知系统动力学的零和博弈(ZSG)无模型最优控制方法。首先,基于自适应动态规划(ADP),通过求解Hamilton-Jacobi-Issacs (HJI)方程得到最优策略;其次,利用积分强化学习(IRL)算法设计了基于数据的最优控制方法。此外,为了减少通信负担,提出了一种基于事件触发irl的完全未知系统ZSG控制方法。利用李亚普诺夫原理对其稳定性进行了分析。最后通过仿真算例验证了所设计算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Based Event-Triggered Control of Zero-Sum Games with Completely Unknown Dynamics
In our design, we develop a model-free optimal control method of zero-sum games (ZSG) with unknown system dynamics under the event-triggered mechanism. Firstly, based on the adaptive dynamic programming (ADP), the optimal policies are obtained by solving the Hamilton-Jacobi-Issacs (HJI) equation. Secondly, a data-based optimal control approach is designed via integral reinforcement learning (IRL) algorithm. Moreover, to reduce the communication burden, an event-triggered IRL-based control method is proposed for ZSG of completely unknown system. The stability analysis is given via Lyapunov principle. Finally, a simulation example is illustrated to show the effectiveness of the designed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信