基于自适应稀疏字典算法的语音分离

M. Jafari, Mark D. Plumbley, M. Davies
{"title":"基于自适应稀疏字典算法的语音分离","authors":"M. Jafari, Mark D. Plumbley, M. Davies","doi":"10.1109/HSCMA.2008.4538679","DOIUrl":null,"url":null,"abstract":"We present a greedy adaptive algorithm that builds a sparse orthogonal dictionary from the observed data. In this paper, the algorithm is used to separate stereo speech signals, and the phase information that is inherent to the extracted atom pairs is used for clustering and identification of the original sources. The performance of the algorithm is compared to that of the adaptive stereo basis algorithm, when the sources are mixed in echoic and anechoic environments. We find that the algorithm correctly separates the sources, and can do this even with a relatively small number of atoms.","PeriodicalId":129827,"journal":{"name":"2008 Hands-Free Speech Communication and Microphone Arrays","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Speech Separation Using an Adaptive Sparse Dictionary Algorithm\",\"authors\":\"M. Jafari, Mark D. Plumbley, M. Davies\",\"doi\":\"10.1109/HSCMA.2008.4538679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a greedy adaptive algorithm that builds a sparse orthogonal dictionary from the observed data. In this paper, the algorithm is used to separate stereo speech signals, and the phase information that is inherent to the extracted atom pairs is used for clustering and identification of the original sources. The performance of the algorithm is compared to that of the adaptive stereo basis algorithm, when the sources are mixed in echoic and anechoic environments. We find that the algorithm correctly separates the sources, and can do this even with a relatively small number of atoms.\",\"PeriodicalId\":129827,\"journal\":{\"name\":\"2008 Hands-Free Speech Communication and Microphone Arrays\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Hands-Free Speech Communication and Microphone Arrays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HSCMA.2008.4538679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Hands-Free Speech Communication and Microphone Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HSCMA.2008.4538679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种贪婪自适应算法,利用观测数据构建稀疏正交字典。本文利用该算法对立体语音信号进行分离,并利用提取的原子对所固有的相位信息对原始语音信号进行聚类和识别。将该算法与自适应立体基算法在有回声和无回声混合环境下的性能进行了比较。我们发现该算法可以正确地分离源,并且即使使用相对较少的原子也可以做到这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speech Separation Using an Adaptive Sparse Dictionary Algorithm
We present a greedy adaptive algorithm that builds a sparse orthogonal dictionary from the observed data. In this paper, the algorithm is used to separate stereo speech signals, and the phase information that is inherent to the extracted atom pairs is used for clustering and identification of the original sources. The performance of the algorithm is compared to that of the adaptive stereo basis algorithm, when the sources are mixed in echoic and anechoic environments. We find that the algorithm correctly separates the sources, and can do this even with a relatively small number of atoms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信