{"title":"应用于包含人造物体的自然图像的无监督纹理分割","authors":"X. Dai, J. Maeda","doi":"10.1109/ICCIMA.2001.970503","DOIUrl":null,"url":null,"abstract":"This paper presents a region-based unsupervised segmentation for natural images containing man-made objects. We propose a texture feature extraction to obtain more discriminating features. Statistical Geometrical Features (SGF) are used as texture features. The SGF of the original image and the smoothed image obtained from an anisotropic edge-preserving diffusion are combined for segmentation use. We also propose a modified segmentation algorithm which performs segmentation in four stages: hierarchical splitting, local agglomerative merging, global agglomerative merging and pixelwise classification. Local agglomerative merging combines segments locally, which will greatly reduce the time cost. We make some experiments to demonstrate the effectiveness of the proposed technique in the segmentation of natural images containing man-made objects. The reduction of computation time is also provided.","PeriodicalId":232504,"journal":{"name":"Proceedings Fourth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2001","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Unsupervised texture segmentation applied to natural images containing man-made objects\",\"authors\":\"X. Dai, J. Maeda\",\"doi\":\"10.1109/ICCIMA.2001.970503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a region-based unsupervised segmentation for natural images containing man-made objects. We propose a texture feature extraction to obtain more discriminating features. Statistical Geometrical Features (SGF) are used as texture features. The SGF of the original image and the smoothed image obtained from an anisotropic edge-preserving diffusion are combined for segmentation use. We also propose a modified segmentation algorithm which performs segmentation in four stages: hierarchical splitting, local agglomerative merging, global agglomerative merging and pixelwise classification. Local agglomerative merging combines segments locally, which will greatly reduce the time cost. We make some experiments to demonstrate the effectiveness of the proposed technique in the segmentation of natural images containing man-made objects. The reduction of computation time is also provided.\",\"PeriodicalId\":232504,\"journal\":{\"name\":\"Proceedings Fourth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2001\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fourth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2001\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIMA.2001.970503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIMA.2001.970503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unsupervised texture segmentation applied to natural images containing man-made objects
This paper presents a region-based unsupervised segmentation for natural images containing man-made objects. We propose a texture feature extraction to obtain more discriminating features. Statistical Geometrical Features (SGF) are used as texture features. The SGF of the original image and the smoothed image obtained from an anisotropic edge-preserving diffusion are combined for segmentation use. We also propose a modified segmentation algorithm which performs segmentation in four stages: hierarchical splitting, local agglomerative merging, global agglomerative merging and pixelwise classification. Local agglomerative merging combines segments locally, which will greatly reduce the time cost. We make some experiments to demonstrate the effectiveness of the proposed technique in the segmentation of natural images containing man-made objects. The reduction of computation time is also provided.