基于句法和语义特征匹配和改进的平均对等排序测量的生物学问题回答

Ryan T. K. Lin, J. Chiu, Hong-Jie Dai, Min-Yuh Day, Richard Tzong-Han Tsai, W. Hsu
{"title":"基于句法和语义特征匹配和改进的平均对等排序测量的生物学问题回答","authors":"Ryan T. K. Lin, J. Chiu, Hong-Jie Dai, Min-Yuh Day, Richard Tzong-Han Tsai, W. Hsu","doi":"10.1109/IRI.2008.4583027","DOIUrl":null,"url":null,"abstract":"Specific information on biomolecular events such as protein-protein and gene-protein interactions is essential for molecular biology researchers. However, the results derived by current keyword-based information retrieval engine contain a great deal of noisy information, which forces biologists to use a combination of several keywords to locate information. To resolve this problem, we propose a question answering (QA) system that offers more efficient and user-friendly ways to retrieve desired information. In addition, QA system measurements may suffer from the same score problem, so the evaluation of a QA system may be unfair. An improved mean reciprocal rank (MRR) measurement, mean average reciprocal rank (MARR), and an efficient formula to reduce the computational complexity of the MARR are proposed to address the same score problem. With our syntactic and semantic features, our system achieves a Top-1 MARR of 74.11% and Top-5 MARR of 76.68%. Compared to the baseline system, Top-1 MARR and Top-5 MARR increase by 16.17% and 18.61% respectively.","PeriodicalId":169554,"journal":{"name":"2008 IEEE International Conference on Information Reuse and Integration","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Biological question answering with syntactic and semantic feature matching and an improved mean reciprocal ranking measurement\",\"authors\":\"Ryan T. K. Lin, J. Chiu, Hong-Jie Dai, Min-Yuh Day, Richard Tzong-Han Tsai, W. Hsu\",\"doi\":\"10.1109/IRI.2008.4583027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Specific information on biomolecular events such as protein-protein and gene-protein interactions is essential for molecular biology researchers. However, the results derived by current keyword-based information retrieval engine contain a great deal of noisy information, which forces biologists to use a combination of several keywords to locate information. To resolve this problem, we propose a question answering (QA) system that offers more efficient and user-friendly ways to retrieve desired information. In addition, QA system measurements may suffer from the same score problem, so the evaluation of a QA system may be unfair. An improved mean reciprocal rank (MRR) measurement, mean average reciprocal rank (MARR), and an efficient formula to reduce the computational complexity of the MARR are proposed to address the same score problem. With our syntactic and semantic features, our system achieves a Top-1 MARR of 74.11% and Top-5 MARR of 76.68%. Compared to the baseline system, Top-1 MARR and Top-5 MARR increase by 16.17% and 18.61% respectively.\",\"PeriodicalId\":169554,\"journal\":{\"name\":\"2008 IEEE International Conference on Information Reuse and Integration\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Information Reuse and Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2008.4583027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Information Reuse and Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2008.4583027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

生物分子事件的具体信息,如蛋白质-蛋白质和基因-蛋白质相互作用是分子生物学研究人员必不可少的。然而,目前基于关键字的信息检索引擎所得到的结果包含了大量的噪声信息,这迫使生物学家使用多个关键字的组合来定位信息。为了解决这个问题,我们提出了一个问答(QA)系统,它提供了更有效和用户友好的方式来检索所需的信息。此外,QA系统测量可能会受到相同分数问题的影响,因此QA系统的评估可能是不公平的。为了解决同分问题,提出了一种改进的平均倒数秩(MRR)度量方法、平均倒数秩(MARR)和降低MARR计算复杂度的有效公式。根据我们的句法和语义特征,我们的系统实现了前1名的MARR为74.11%,前5名的MARR为76.68%。与基线系统相比,Top-1 MARR和Top-5 MARR分别提高了16.17%和18.61%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biological question answering with syntactic and semantic feature matching and an improved mean reciprocal ranking measurement
Specific information on biomolecular events such as protein-protein and gene-protein interactions is essential for molecular biology researchers. However, the results derived by current keyword-based information retrieval engine contain a great deal of noisy information, which forces biologists to use a combination of several keywords to locate information. To resolve this problem, we propose a question answering (QA) system that offers more efficient and user-friendly ways to retrieve desired information. In addition, QA system measurements may suffer from the same score problem, so the evaluation of a QA system may be unfair. An improved mean reciprocal rank (MRR) measurement, mean average reciprocal rank (MARR), and an efficient formula to reduce the computational complexity of the MARR are proposed to address the same score problem. With our syntactic and semantic features, our system achieves a Top-1 MARR of 74.11% and Top-5 MARR of 76.68%. Compared to the baseline system, Top-1 MARR and Top-5 MARR increase by 16.17% and 18.61% respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信