基于BioDynaMo的高性能可扩展代理仿真

Lukas Breitwieser, Ahmad Hesam, F. Rademakers, Juan Gómez Luna, O. Mutlu
{"title":"基于BioDynaMo的高性能可扩展代理仿真","authors":"Lukas Breitwieser, Ahmad Hesam, F. Rademakers, Juan Gómez Luna, O. Mutlu","doi":"10.1145/3572848.3577480","DOIUrl":null,"url":null,"abstract":"Agent-based modeling plays an essential role in gaining insights into biology, sociology, economics, and other fields. However, many existing agent-based simulation platforms are not suitable for large-scale studies due to the low performance of the underlying simulation engines. To overcome this limitation, we present a novel high-performance simulation engine. We identify three key challenges for which we present the following solutions. First, to maximize parallelization, we present an optimized grid to search for neighbors and parallelize the merging of thread-local results. Second, we reduce the memory access latency with a NUMA-aware agent iterator, agent sorting with a space-filling curve, and a custom heap memory allocator. Third, we present a mechanism to omit the collision force calculation under certain conditions. Our evaluation shows an order of magnitude improvement over Biocellion, three orders of magnitude speedup over Cortex3D and NetLogo, and the ability to simulate 1.72 billion agents on a single server. Supplementary Materials, including instructions to reproduce the results, are available at: https://doi.org/10.5281/zenodo.6463816","PeriodicalId":233744,"journal":{"name":"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High-Performance and Scalable Agent-Based Simulation with BioDynaMo\",\"authors\":\"Lukas Breitwieser, Ahmad Hesam, F. Rademakers, Juan Gómez Luna, O. Mutlu\",\"doi\":\"10.1145/3572848.3577480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Agent-based modeling plays an essential role in gaining insights into biology, sociology, economics, and other fields. However, many existing agent-based simulation platforms are not suitable for large-scale studies due to the low performance of the underlying simulation engines. To overcome this limitation, we present a novel high-performance simulation engine. We identify three key challenges for which we present the following solutions. First, to maximize parallelization, we present an optimized grid to search for neighbors and parallelize the merging of thread-local results. Second, we reduce the memory access latency with a NUMA-aware agent iterator, agent sorting with a space-filling curve, and a custom heap memory allocator. Third, we present a mechanism to omit the collision force calculation under certain conditions. Our evaluation shows an order of magnitude improvement over Biocellion, three orders of magnitude speedup over Cortex3D and NetLogo, and the ability to simulate 1.72 billion agents on a single server. Supplementary Materials, including instructions to reproduce the results, are available at: https://doi.org/10.5281/zenodo.6463816\",\"PeriodicalId\":233744,\"journal\":{\"name\":\"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3572848.3577480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3572848.3577480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于主体的建模在获得生物学、社会学、经济学和其他领域的见解方面起着至关重要的作用。然而,现有的许多基于agent的仿真平台由于底层仿真引擎性能不高,不适合大规模研究。为了克服这一限制,我们提出了一种新的高性能仿真引擎。我们确定了三个关键挑战,并提出了以下解决方案。首先,为了最大化并行化,我们提出了一个优化的网格来搜索邻居并并行化线程局部结果的合并。其次,我们使用numa感知代理迭代器、具有空间填充曲线的代理排序和自定义堆内存分配器来减少内存访问延迟。第三,给出了在一定条件下忽略碰撞力计算的机制。我们的评估显示,它比Biocellion有一个数量级的改进,比Cortex3D和NetLogo有三个数量级的加速,并且能够在单个服务器上模拟17.2亿个代理。补充材料,包括复制结果的说明,可在https://doi.org/10.5281/zenodo.6463816上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Performance and Scalable Agent-Based Simulation with BioDynaMo
Agent-based modeling plays an essential role in gaining insights into biology, sociology, economics, and other fields. However, many existing agent-based simulation platforms are not suitable for large-scale studies due to the low performance of the underlying simulation engines. To overcome this limitation, we present a novel high-performance simulation engine. We identify three key challenges for which we present the following solutions. First, to maximize parallelization, we present an optimized grid to search for neighbors and parallelize the merging of thread-local results. Second, we reduce the memory access latency with a NUMA-aware agent iterator, agent sorting with a space-filling curve, and a custom heap memory allocator. Third, we present a mechanism to omit the collision force calculation under certain conditions. Our evaluation shows an order of magnitude improvement over Biocellion, three orders of magnitude speedup over Cortex3D and NetLogo, and the ability to simulate 1.72 billion agents on a single server. Supplementary Materials, including instructions to reproduce the results, are available at: https://doi.org/10.5281/zenodo.6463816
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信