基于小波的阈值函数去噪方法

Kun Yang, Caixia Deng, Yu Chen, Li-Xiang Xu
{"title":"基于小波的阈值函数去噪方法","authors":"Kun Yang, Caixia Deng, Yu Chen, Li-Xiang Xu","doi":"10.1109/ICWAPR.2014.6961296","DOIUrl":null,"url":null,"abstract":"Image in the process of collection and storage can produce noise. Wavelet threshold de-noising is a method to remove noise effectively. The threshold function is a key in wavelet threshold de-noising method. In view of the hard-threshold function discontinuity and soft-threshold function deviation problem, through the analysis of the existing wavelet threshold de-noising methods, we present the improvement de-noising method of threshold function with the parameters in adjustable. Through experiments, we compare our method with the existing methods of wavelet threshold de-noising. In terms of the evaluation criteria, we find that the improved method of threshold function can remove the noise effectively.","PeriodicalId":439086,"journal":{"name":"2014 International Conference on Wavelet Analysis and Pattern Recognition","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The de-noising method of threshold function based on wavelet\",\"authors\":\"Kun Yang, Caixia Deng, Yu Chen, Li-Xiang Xu\",\"doi\":\"10.1109/ICWAPR.2014.6961296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image in the process of collection and storage can produce noise. Wavelet threshold de-noising is a method to remove noise effectively. The threshold function is a key in wavelet threshold de-noising method. In view of the hard-threshold function discontinuity and soft-threshold function deviation problem, through the analysis of the existing wavelet threshold de-noising methods, we present the improvement de-noising method of threshold function with the parameters in adjustable. Through experiments, we compare our method with the existing methods of wavelet threshold de-noising. In terms of the evaluation criteria, we find that the improved method of threshold function can remove the noise effectively.\",\"PeriodicalId\":439086,\"journal\":{\"name\":\"2014 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2014.6961296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2014.6961296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

图像在采集和存储过程中会产生噪声。小波阈值去噪是一种有效的去噪方法。阈值函数是小波阈值去噪方法的关键。针对硬阈值函数不连续和软阈值函数偏差问题,通过对现有小波阈值去噪方法的分析,提出了参数可调的阈值函数去噪改进方法。通过实验,将该方法与现有的小波阈值去噪方法进行了比较。在评价标准方面,我们发现改进的阈值函数方法可以有效地去除噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The de-noising method of threshold function based on wavelet
Image in the process of collection and storage can produce noise. Wavelet threshold de-noising is a method to remove noise effectively. The threshold function is a key in wavelet threshold de-noising method. In view of the hard-threshold function discontinuity and soft-threshold function deviation problem, through the analysis of the existing wavelet threshold de-noising methods, we present the improvement de-noising method of threshold function with the parameters in adjustable. Through experiments, we compare our method with the existing methods of wavelet threshold de-noising. In terms of the evaluation criteria, we find that the improved method of threshold function can remove the noise effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信