贝叶斯网络推断估计培养神经网络的功能连通性

Sungwon Jung, Doheon Lee, Y. Nam
{"title":"贝叶斯网络推断估计培养神经网络的功能连通性","authors":"Sungwon Jung, Doheon Lee, Y. Nam","doi":"10.1109/CNE.2007.369766","DOIUrl":null,"url":null,"abstract":"Microelectrode array recordings from single neurons generate multidimensional data (spike trains) that contains vast amount of information on underlying neural dynamics. Typically, the data analysis procedure is very time consuming, which greatly hinders the experimental throughputs. Bioinformatics community also deals with high dimensional data sets and the underlying mathematics of data analysis used in this field is very similar to that used in neural informatics. Here, we attempt to use the well-established data analysis procedure (Bayesian network inference) in Bioinformatics and utilized it to estimate the functional connectivity of cultured neural networks based on multichannel spike trains. The basic analysis procedure could be easily extended to in vivo neural spike data analysis for various neural engineering applications","PeriodicalId":427054,"journal":{"name":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bayesian Network Inference to Estimate the Functional Connectivity of Cultured Neuronal Networks\",\"authors\":\"Sungwon Jung, Doheon Lee, Y. Nam\",\"doi\":\"10.1109/CNE.2007.369766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microelectrode array recordings from single neurons generate multidimensional data (spike trains) that contains vast amount of information on underlying neural dynamics. Typically, the data analysis procedure is very time consuming, which greatly hinders the experimental throughputs. Bioinformatics community also deals with high dimensional data sets and the underlying mathematics of data analysis used in this field is very similar to that used in neural informatics. Here, we attempt to use the well-established data analysis procedure (Bayesian network inference) in Bioinformatics and utilized it to estimate the functional connectivity of cultured neural networks based on multichannel spike trains. The basic analysis procedure could be easily extended to in vivo neural spike data analysis for various neural engineering applications\",\"PeriodicalId\":427054,\"journal\":{\"name\":\"2007 3rd International IEEE/EMBS Conference on Neural Engineering\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 3rd International IEEE/EMBS Conference on Neural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNE.2007.369766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNE.2007.369766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

来自单个神经元的微电极阵列记录产生包含大量潜在神经动力学信息的多维数据(尖峰序列)。通常,数据分析过程非常耗时,这极大地阻碍了实验吞吐量。生物信息学社区也处理高维数据集,该领域中使用的数据分析的基础数学与神经信息学中使用的数学非常相似。在这里,我们尝试使用生物信息学中成熟的数据分析程序(贝叶斯网络推理),并利用它来估计基于多通道尖峰序列的培养神经网络的功能连通性。基本的分析程序可以很容易地扩展到各种神经工程应用的体内神经脉冲数据分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Network Inference to Estimate the Functional Connectivity of Cultured Neuronal Networks
Microelectrode array recordings from single neurons generate multidimensional data (spike trains) that contains vast amount of information on underlying neural dynamics. Typically, the data analysis procedure is very time consuming, which greatly hinders the experimental throughputs. Bioinformatics community also deals with high dimensional data sets and the underlying mathematics of data analysis used in this field is very similar to that used in neural informatics. Here, we attempt to use the well-established data analysis procedure (Bayesian network inference) in Bioinformatics and utilized it to estimate the functional connectivity of cultured neural networks based on multichannel spike trains. The basic analysis procedure could be easily extended to in vivo neural spike data analysis for various neural engineering applications
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信