用实验设计法研究反渗透海水淡化的能耗和性能

M. Kazemian, S. Ebrahimi-Nejad, M. Jaafarian
{"title":"用实验设计法研究反渗透海水淡化的能耗和性能","authors":"M. Kazemian, S. Ebrahimi-Nejad, M. Jaafarian","doi":"10.5829/ije.2018.31.01a.12","DOIUrl":null,"url":null,"abstract":"To control the quality of reverse osmosis (RO) product water and reduce operational costs and environmental impacts by increasing the system’s energy efficiency, it is necessary to identify the influence of process parameters on energy consumption and permeate water quality. This paper introduces a case study focused on the application of Design of Experiments (DOE) method in an industrial-scale RO desalination plant. In this study, energy consumption and permeate water salinity are formulated in terms of system design (the number of membranes and system recovery rate) and flow parameters (feed water flow rate, alkalinity, thermal effects, and salinity). Findings indicate that energy consumption decreases by increasing feed water temperature and the number of membranes. Moreover, increasing feed water flow rate and alkalinity leads to higher quality permeate water (lower salinity), whereas, increasing the number of membranes and system recovery rate and higher feed water temperature and salinity, increases the salinity of permeate water. The findings provide insight into the RO process features and can help designers and operators achieve a higher energy efficiency and better performance in the design and operation of RO units and the presented solution can be built into systems for comprehensive techno-economic evaluation of RO-based processes to consider changes in effective parameters.","PeriodicalId":416886,"journal":{"name":"International journal of engineering. Transactions A: basics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Experimental Investigation of Energy Consumption and Performance of Reverse Osmosis Desalination using Design of Experiments Method\",\"authors\":\"M. Kazemian, S. Ebrahimi-Nejad, M. Jaafarian\",\"doi\":\"10.5829/ije.2018.31.01a.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To control the quality of reverse osmosis (RO) product water and reduce operational costs and environmental impacts by increasing the system’s energy efficiency, it is necessary to identify the influence of process parameters on energy consumption and permeate water quality. This paper introduces a case study focused on the application of Design of Experiments (DOE) method in an industrial-scale RO desalination plant. In this study, energy consumption and permeate water salinity are formulated in terms of system design (the number of membranes and system recovery rate) and flow parameters (feed water flow rate, alkalinity, thermal effects, and salinity). Findings indicate that energy consumption decreases by increasing feed water temperature and the number of membranes. Moreover, increasing feed water flow rate and alkalinity leads to higher quality permeate water (lower salinity), whereas, increasing the number of membranes and system recovery rate and higher feed water temperature and salinity, increases the salinity of permeate water. The findings provide insight into the RO process features and can help designers and operators achieve a higher energy efficiency and better performance in the design and operation of RO units and the presented solution can be built into systems for comprehensive techno-economic evaluation of RO-based processes to consider changes in effective parameters.\",\"PeriodicalId\":416886,\"journal\":{\"name\":\"International journal of engineering. Transactions A: basics\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of engineering. Transactions A: basics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5829/ije.2018.31.01a.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of engineering. Transactions A: basics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5829/ije.2018.31.01a.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

为了控制反渗透(RO)产品水的质量,通过提高系统的能效来降低运行成本和环境影响,有必要确定工艺参数对能耗和渗透水质的影响。本文介绍了实验设计(DOE)方法在工业规模反渗透海水淡化厂中的应用实例。在本研究中,通过系统设计(膜数和系统回收率)和流量参数(给水流量、碱度、热效应和盐度)来制定能耗和渗透水盐度。结果表明,提高进水温度和膜数可以降低能耗。此外,增加给水流量和碱度可以提高渗透水的质量(降低盐度),而增加膜数和系统回收率以及提高给水温度和盐度可以提高渗透水的盐度。研究结果提供了对RO工艺特点的深入了解,可以帮助设计人员和操作人员在RO装置的设计和操作中实现更高的能源效率和更好的性能,并且所提出的解决方案可以构建到系统中,对基于RO的工艺进行综合技术经济评估,以考虑有效参数的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Investigation of Energy Consumption and Performance of Reverse Osmosis Desalination using Design of Experiments Method
To control the quality of reverse osmosis (RO) product water and reduce operational costs and environmental impacts by increasing the system’s energy efficiency, it is necessary to identify the influence of process parameters on energy consumption and permeate water quality. This paper introduces a case study focused on the application of Design of Experiments (DOE) method in an industrial-scale RO desalination plant. In this study, energy consumption and permeate water salinity are formulated in terms of system design (the number of membranes and system recovery rate) and flow parameters (feed water flow rate, alkalinity, thermal effects, and salinity). Findings indicate that energy consumption decreases by increasing feed water temperature and the number of membranes. Moreover, increasing feed water flow rate and alkalinity leads to higher quality permeate water (lower salinity), whereas, increasing the number of membranes and system recovery rate and higher feed water temperature and salinity, increases the salinity of permeate water. The findings provide insight into the RO process features and can help designers and operators achieve a higher energy efficiency and better performance in the design and operation of RO units and the presented solution can be built into systems for comprehensive techno-economic evaluation of RO-based processes to consider changes in effective parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信