击键动力学的统计融合方法

Pin Shen Teh, A. Teoh, T. Ong, H. Neo
{"title":"击键动力学的统计融合方法","authors":"Pin Shen Teh, A. Teoh, T. Ong, H. Neo","doi":"10.1109/SITIS.2007.46","DOIUrl":null,"url":null,"abstract":"Keystroke dynamics refers to a userpsilas habitual typing characteristics. These typing characteristics are believed to be unique among large populations. In this paper, we present a novel keystroke dynamic recognition system by using a fusion method. Firstly,we record the dwell time and the flight time as the feature data. We then calculate their mean and standard deviation values and stored. The test feature data will be transformed into the scores via Gaussian probability density function. On the other hand, we also propose a new technique, known as Direction Similarity Measure (DSM) to measure the differential of sign among each coupled characters in a phrase. Lastly, a weighted sum rule is applied by fusing the Gaussian scores and the DSM to enhance the final result. The best result of equal error rate 6.36% is obtained by using our home-made dataset.","PeriodicalId":234433,"journal":{"name":"2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Statistical Fusion Approach on Keystroke Dynamics\",\"authors\":\"Pin Shen Teh, A. Teoh, T. Ong, H. Neo\",\"doi\":\"10.1109/SITIS.2007.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Keystroke dynamics refers to a userpsilas habitual typing characteristics. These typing characteristics are believed to be unique among large populations. In this paper, we present a novel keystroke dynamic recognition system by using a fusion method. Firstly,we record the dwell time and the flight time as the feature data. We then calculate their mean and standard deviation values and stored. The test feature data will be transformed into the scores via Gaussian probability density function. On the other hand, we also propose a new technique, known as Direction Similarity Measure (DSM) to measure the differential of sign among each coupled characters in a phrase. Lastly, a weighted sum rule is applied by fusing the Gaussian scores and the DSM to enhance the final result. The best result of equal error rate 6.36% is obtained by using our home-made dataset.\",\"PeriodicalId\":234433,\"journal\":{\"name\":\"2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2007.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2007.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

击键动力学是指用户习惯性打字的一种特征。这些分型特征被认为在大人群中是独一无二的。本文提出了一种基于融合方法的按键动态识别系统。首先,我们记录了停留时间和飞行时间作为特征数据。然后计算它们的均值和标准差值并存储。测试特征数据将通过高斯概率密度函数转换成分数。另一方面,我们还提出了一种新的方法——方向相似度量(DSM)来度量短语中每个耦合字符之间的符号差。最后,通过融合高斯分数和DSM,采用加权和规则来增强最终结果。使用自制数据集,获得了等错误率6.36%的最佳结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Fusion Approach on Keystroke Dynamics
Keystroke dynamics refers to a userpsilas habitual typing characteristics. These typing characteristics are believed to be unique among large populations. In this paper, we present a novel keystroke dynamic recognition system by using a fusion method. Firstly,we record the dwell time and the flight time as the feature data. We then calculate their mean and standard deviation values and stored. The test feature data will be transformed into the scores via Gaussian probability density function. On the other hand, we also propose a new technique, known as Direction Similarity Measure (DSM) to measure the differential of sign among each coupled characters in a phrase. Lastly, a weighted sum rule is applied by fusing the Gaussian scores and the DSM to enhance the final result. The best result of equal error rate 6.36% is obtained by using our home-made dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信