{"title":"基于模型驱动的可靠嵌入式系统容错设计框架","authors":"A. Ziani, B. Hamid, J. Bruel","doi":"10.1109/SEAA.2012.47","DOIUrl":null,"url":null,"abstract":"This paper proposes a model based framework for the design of dependable embedded systems. First we define a meta-model to encompass the different concepts to capture fault tolerance. This will be used to derive a UML profile for the specification and the management of the redundancy. Based on this profile, we propose a model library as reusable and composable UML components to construct a fault tolerant infrastructure. As proof of concept, a GPS use case with fault tolerance requirements is evaluated using the proposed framework.","PeriodicalId":298734,"journal":{"name":"2012 38th Euromicro Conference on Software Engineering and Advanced Applications","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Model-Driven Engineering Framework for Fault Tolerance in Dependable Embedded Systems Design\",\"authors\":\"A. Ziani, B. Hamid, J. Bruel\",\"doi\":\"10.1109/SEAA.2012.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a model based framework for the design of dependable embedded systems. First we define a meta-model to encompass the different concepts to capture fault tolerance. This will be used to derive a UML profile for the specification and the management of the redundancy. Based on this profile, we propose a model library as reusable and composable UML components to construct a fault tolerant infrastructure. As proof of concept, a GPS use case with fault tolerance requirements is evaluated using the proposed framework.\",\"PeriodicalId\":298734,\"journal\":{\"name\":\"2012 38th Euromicro Conference on Software Engineering and Advanced Applications\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 38th Euromicro Conference on Software Engineering and Advanced Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEAA.2012.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 38th Euromicro Conference on Software Engineering and Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAA.2012.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Model-Driven Engineering Framework for Fault Tolerance in Dependable Embedded Systems Design
This paper proposes a model based framework for the design of dependable embedded systems. First we define a meta-model to encompass the different concepts to capture fault tolerance. This will be used to derive a UML profile for the specification and the management of the redundancy. Based on this profile, we propose a model library as reusable and composable UML components to construct a fault tolerant infrastructure. As proof of concept, a GPS use case with fault tolerance requirements is evaluated using the proposed framework.