{"title":"基于CNOT门的量子信息传输","authors":"Ankit Sharma, M. Nene","doi":"10.3233/apc210219","DOIUrl":null,"url":null,"abstract":"We are at the dawn of quantum era; research efforts are been made on quantum information transmission techniques. Properties of quantum mechanics poses unique challenges in terms of wave collapse function, No cloning theorem and reversible operations. Quantum teleportation and quantum entanglement swapping based architecture are utilized to transmit qubit. In this paper we propose an approach to transmit qubits using controlled NOT gate (CNOT) gates and implement it on quantum machine.","PeriodicalId":429440,"journal":{"name":"Recent Trends in Intensive Computing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Information Transmission Using CNOT Gate\",\"authors\":\"Ankit Sharma, M. Nene\",\"doi\":\"10.3233/apc210219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are at the dawn of quantum era; research efforts are been made on quantum information transmission techniques. Properties of quantum mechanics poses unique challenges in terms of wave collapse function, No cloning theorem and reversible operations. Quantum teleportation and quantum entanglement swapping based architecture are utilized to transmit qubit. In this paper we propose an approach to transmit qubits using controlled NOT gate (CNOT) gates and implement it on quantum machine.\",\"PeriodicalId\":429440,\"journal\":{\"name\":\"Recent Trends in Intensive Computing\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Trends in Intensive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/apc210219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Trends in Intensive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/apc210219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We are at the dawn of quantum era; research efforts are been made on quantum information transmission techniques. Properties of quantum mechanics poses unique challenges in terms of wave collapse function, No cloning theorem and reversible operations. Quantum teleportation and quantum entanglement swapping based architecture are utilized to transmit qubit. In this paper we propose an approach to transmit qubits using controlled NOT gate (CNOT) gates and implement it on quantum machine.