基于sdn网络的深度递归神经网络入侵检测

Tuan A. Tang, L. Mhamdi, D. McLernon, Syed Ali Raza Zaidi, M. Ghogho
{"title":"基于sdn网络的深度递归神经网络入侵检测","authors":"Tuan A. Tang, L. Mhamdi, D. McLernon, Syed Ali Raza Zaidi, M. Ghogho","doi":"10.1109/NETSOFT.2018.8460090","DOIUrl":null,"url":null,"abstract":"Software Defined Networking (SDN) has emerged as a key enabler for future agile Internet architecture. Nevertheless, the flexibility provided by SDN architecture manifests several new design issues in terms of network security. These issues must be addressed in a unified way to strengthen overall network security for future SDN deployments. Consequently, in this paper, we propose a Gated Recurrent Unit Recurrent Neural Network (GRU-RNN) enabled intrusion detection systems for SDNs. The proposed approach is tested using the NSL-KDD dataset, and we achieve an accuracy of 89% with only six raw features. Our experiment results also show that the proposed GRU-RNN does not deteriorate the network performance. Through extensive experiments, we conclude that the proposed approach exhibits a strong potential for intrusion detection in the SDN environments.","PeriodicalId":333377,"journal":{"name":"2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"178","resultStr":"{\"title\":\"Deep Recurrent Neural Network for Intrusion Detection in SDN-based Networks\",\"authors\":\"Tuan A. Tang, L. Mhamdi, D. McLernon, Syed Ali Raza Zaidi, M. Ghogho\",\"doi\":\"10.1109/NETSOFT.2018.8460090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software Defined Networking (SDN) has emerged as a key enabler for future agile Internet architecture. Nevertheless, the flexibility provided by SDN architecture manifests several new design issues in terms of network security. These issues must be addressed in a unified way to strengthen overall network security for future SDN deployments. Consequently, in this paper, we propose a Gated Recurrent Unit Recurrent Neural Network (GRU-RNN) enabled intrusion detection systems for SDNs. The proposed approach is tested using the NSL-KDD dataset, and we achieve an accuracy of 89% with only six raw features. Our experiment results also show that the proposed GRU-RNN does not deteriorate the network performance. Through extensive experiments, we conclude that the proposed approach exhibits a strong potential for intrusion detection in the SDN environments.\",\"PeriodicalId\":333377,\"journal\":{\"name\":\"2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"178\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NETSOFT.2018.8460090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NETSOFT.2018.8460090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 178

摘要

软件定义网络(SDN)已经成为未来敏捷互联网架构的关键推动者。然而,SDN架构提供的灵活性在网络安全方面体现了几个新的设计问题。这些问题必须统一解决,以加强未来SDN部署的整体网络安全。因此,在本文中,我们提出了一种支持门控循环单元递归神经网络(GRU-RNN)的sdn入侵检测系统。使用NSL-KDD数据集对所提出的方法进行了测试,我们仅使用六个原始特征就实现了89%的准确率。我们的实验结果也表明,所提出的GRU-RNN不会降低网络的性能。通过大量的实验,我们得出结论,提出的方法在SDN环境中显示出强大的入侵检测潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Recurrent Neural Network for Intrusion Detection in SDN-based Networks
Software Defined Networking (SDN) has emerged as a key enabler for future agile Internet architecture. Nevertheless, the flexibility provided by SDN architecture manifests several new design issues in terms of network security. These issues must be addressed in a unified way to strengthen overall network security for future SDN deployments. Consequently, in this paper, we propose a Gated Recurrent Unit Recurrent Neural Network (GRU-RNN) enabled intrusion detection systems for SDNs. The proposed approach is tested using the NSL-KDD dataset, and we achieve an accuracy of 89% with only six raw features. Our experiment results also show that the proposed GRU-RNN does not deteriorate the network performance. Through extensive experiments, we conclude that the proposed approach exhibits a strong potential for intrusion detection in the SDN environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信