基于归一化切割的临床病变图像分割

Yu Zhou, Melvyn L. Smith, Lyndon N. Smith, R. Warr
{"title":"基于归一化切割的临床病变图像分割","authors":"Yu Zhou, Melvyn L. Smith, Lyndon N. Smith, R. Warr","doi":"10.1109/WIAMIS.2009.5031442","DOIUrl":null,"url":null,"abstract":"Analyzing skin cancer automatically by using image processing techniques has attracted enormous attention recently. The first step in analyzing skin cancer is usually isolating suspicious lesions from normal skin. In this paper, a novel segmentation framework capable of segmenting large clinical lesion images is presented. This algorithm proceeds in a coarse-to-fine approach. Firstly, it builds a down-sampled version of the original image after lower-pass filtering. Then it partitions the down-sampled image by normalized cut. Furthermore, this segmentation result can be adapted to the original image by using a histogram based Bayesian classifier. We also discuss the robustness of this segmentation algorithm with respect to the size of the down-sampled images. Experimental study on synthetic and real images illustrate that this algorithm gives promising results for segmenting clinical lesion images.","PeriodicalId":233839,"journal":{"name":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Segmentation of clinical lesion images using normalized cut\",\"authors\":\"Yu Zhou, Melvyn L. Smith, Lyndon N. Smith, R. Warr\",\"doi\":\"10.1109/WIAMIS.2009.5031442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analyzing skin cancer automatically by using image processing techniques has attracted enormous attention recently. The first step in analyzing skin cancer is usually isolating suspicious lesions from normal skin. In this paper, a novel segmentation framework capable of segmenting large clinical lesion images is presented. This algorithm proceeds in a coarse-to-fine approach. Firstly, it builds a down-sampled version of the original image after lower-pass filtering. Then it partitions the down-sampled image by normalized cut. Furthermore, this segmentation result can be adapted to the original image by using a histogram based Bayesian classifier. We also discuss the robustness of this segmentation algorithm with respect to the size of the down-sampled images. Experimental study on synthetic and real images illustrate that this algorithm gives promising results for segmenting clinical lesion images.\",\"PeriodicalId\":233839,\"journal\":{\"name\":\"2009 10th Workshop on Image Analysis for Multimedia Interactive Services\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 10th Workshop on Image Analysis for Multimedia Interactive Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIAMIS.2009.5031442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2009.5031442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

近年来,利用图像处理技术自动分析皮肤癌引起了广泛的关注。分析皮肤癌的第一步通常是将可疑病变从正常皮肤中分离出来。本文提出了一种能够分割大型临床病变图像的分割框架。该算法采用从粗到精的方法进行。首先,对经过低通滤波的原始图像进行下采样;然后对下采样图像进行归一化分割。此外,通过使用基于直方图的贝叶斯分类器,可以使分割结果适应于原始图像。我们还讨论了该分割算法相对于下采样图像的大小的鲁棒性。对合成图像和真实图像的实验研究表明,该算法对临床病变图像的分割效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentation of clinical lesion images using normalized cut
Analyzing skin cancer automatically by using image processing techniques has attracted enormous attention recently. The first step in analyzing skin cancer is usually isolating suspicious lesions from normal skin. In this paper, a novel segmentation framework capable of segmenting large clinical lesion images is presented. This algorithm proceeds in a coarse-to-fine approach. Firstly, it builds a down-sampled version of the original image after lower-pass filtering. Then it partitions the down-sampled image by normalized cut. Furthermore, this segmentation result can be adapted to the original image by using a histogram based Bayesian classifier. We also discuss the robustness of this segmentation algorithm with respect to the size of the down-sampled images. Experimental study on synthetic and real images illustrate that this algorithm gives promising results for segmenting clinical lesion images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信