改进了红外图像中目标提取的图像阈值分割

B. Kamgar-Parsi
{"title":"改进了红外图像中目标提取的图像阈值分割","authors":"B. Kamgar-Parsi","doi":"10.1109/ICIP.2001.959156","DOIUrl":null,"url":null,"abstract":"Object extraction from an IR image background is of great interest both to the military and the commercial sector. A convenient and popular approach to object extraction is image thresholding. In this paper, we describe a new and easy to implement approach for extracting object(s) in single frame IR images, which has many similarities to image thresholding. Both on the basis of theoretical considerations and experimental results, however, our approach appears to be noticeably more dependable than image thresholding for IR images.","PeriodicalId":291827,"journal":{"name":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Improved image thresholding for object extraction in IR images\",\"authors\":\"B. Kamgar-Parsi\",\"doi\":\"10.1109/ICIP.2001.959156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object extraction from an IR image background is of great interest both to the military and the commercial sector. A convenient and popular approach to object extraction is image thresholding. In this paper, we describe a new and easy to implement approach for extracting object(s) in single frame IR images, which has many similarities to image thresholding. Both on the basis of theoretical considerations and experimental results, however, our approach appears to be noticeably more dependable than image thresholding for IR images.\",\"PeriodicalId\":291827,\"journal\":{\"name\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2001.959156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2001.959156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

从红外图像背景中提取目标对军事和商业部门都有很大的兴趣。一种方便而流行的目标提取方法是图像阈值分割。在本文中,我们描述了一种新的、易于实现的方法来提取单帧红外图像中的目标,该方法与图像阈值法有许多相似之处。然而,在理论考虑和实验结果的基础上,我们的方法似乎明显比红外图像的图像阈值法更可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved image thresholding for object extraction in IR images
Object extraction from an IR image background is of great interest both to the military and the commercial sector. A convenient and popular approach to object extraction is image thresholding. In this paper, we describe a new and easy to implement approach for extracting object(s) in single frame IR images, which has many similarities to image thresholding. Both on the basis of theoretical considerations and experimental results, however, our approach appears to be noticeably more dependable than image thresholding for IR images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信