MEDLINE摘要循证医学干预分类标准聚类算法分析

V. Dobrynin, Y. Balykina, M. Kamalov
{"title":"MEDLINE摘要循证医学干预分类标准聚类算法分析","authors":"V. Dobrynin, Y. Balykina, M. Kamalov","doi":"10.1109/SCP.2015.7342223","DOIUrl":null,"url":null,"abstract":"The paper describes a process of clustering of article abstracts, taken from the largest bibliographic life sciences and biomedical information MEDLINE database into categories that correspond to types of medical interventions - types of patient treatments. Experiments were carried out to evaluate the quality of clustering for the following algorithms: K-means; K-means++; Hierarchical clustering, SIB (Sequential information bottleneck) together with the LSA (Latent Semantic Analysis) methods and MI (Mutual Information) which allow selecting feature vectors. Best results of clustering were achieved by K-means++ together with LSA then 210-dimensional space was chosen: Purity = 0.5719, Entropy = 1.3841, Normalized Entropy = 0.6299.","PeriodicalId":110366,"journal":{"name":"2015 International Conference \"Stability and Control Processes\" in Memory of V.I. Zubov (SCP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of standard clustering algorithms for grouping MEDLINE abstracts into evidence-based medicine intervention categories\",\"authors\":\"V. Dobrynin, Y. Balykina, M. Kamalov\",\"doi\":\"10.1109/SCP.2015.7342223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes a process of clustering of article abstracts, taken from the largest bibliographic life sciences and biomedical information MEDLINE database into categories that correspond to types of medical interventions - types of patient treatments. Experiments were carried out to evaluate the quality of clustering for the following algorithms: K-means; K-means++; Hierarchical clustering, SIB (Sequential information bottleneck) together with the LSA (Latent Semantic Analysis) methods and MI (Mutual Information) which allow selecting feature vectors. Best results of clustering were achieved by K-means++ together with LSA then 210-dimensional space was chosen: Purity = 0.5719, Entropy = 1.3841, Normalized Entropy = 0.6299.\",\"PeriodicalId\":110366,\"journal\":{\"name\":\"2015 International Conference \\\"Stability and Control Processes\\\" in Memory of V.I. Zubov (SCP)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference \\\"Stability and Control Processes\\\" in Memory of V.I. Zubov (SCP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCP.2015.7342223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference \"Stability and Control Processes\" in Memory of V.I. Zubov (SCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCP.2015.7342223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文描述了文章摘要聚类的过程,文章摘要取自最大的书目生命科学和生物医学信息MEDLINE数据库,按医疗干预类型(患者治疗类型)分类。实验评估了以下算法的聚类质量:K-means;k - means + +;分层聚类,SIB(顺序信息瓶颈),以及LSA(潜在语义分析)方法和MI(互信息)方法,允许选择特征向量。k -means++结合LSA聚类效果最好,选择210维空间:纯度= 0.5719,熵= 1.3841,归一化熵= 0.6299。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of standard clustering algorithms for grouping MEDLINE abstracts into evidence-based medicine intervention categories
The paper describes a process of clustering of article abstracts, taken from the largest bibliographic life sciences and biomedical information MEDLINE database into categories that correspond to types of medical interventions - types of patient treatments. Experiments were carried out to evaluate the quality of clustering for the following algorithms: K-means; K-means++; Hierarchical clustering, SIB (Sequential information bottleneck) together with the LSA (Latent Semantic Analysis) methods and MI (Mutual Information) which allow selecting feature vectors. Best results of clustering were achieved by K-means++ together with LSA then 210-dimensional space was chosen: Purity = 0.5719, Entropy = 1.3841, Normalized Entropy = 0.6299.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信