V. Bangari, B. Marquez, A. Tait, M. Nahmias, T. F. de Lima, H. T. Peng, P. Prucnal, B. Shastri
{"title":"深度学习的神经形态光子学","authors":"V. Bangari, B. Marquez, A. Tait, M. Nahmias, T. F. de Lima, H. T. Peng, P. Prucnal, B. Shastri","doi":"10.1109/IPCon.2019.8908375","DOIUrl":null,"url":null,"abstract":"Co-integrated neuromorphic photonic and electronic processors promise orders of magnitude improvements in both speed and energy efficiency over purely digital electronic approaches. We discuss neuromorphic photonic systems and their application to deep convolutional neural networks inference.","PeriodicalId":314151,"journal":{"name":"2019 IEEE Photonics Conference (IPC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neuromorphic Photonics for Deep Learning\",\"authors\":\"V. Bangari, B. Marquez, A. Tait, M. Nahmias, T. F. de Lima, H. T. Peng, P. Prucnal, B. Shastri\",\"doi\":\"10.1109/IPCon.2019.8908375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Co-integrated neuromorphic photonic and electronic processors promise orders of magnitude improvements in both speed and energy efficiency over purely digital electronic approaches. We discuss neuromorphic photonic systems and their application to deep convolutional neural networks inference.\",\"PeriodicalId\":314151,\"journal\":{\"name\":\"2019 IEEE Photonics Conference (IPC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Photonics Conference (IPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPCon.2019.8908375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Photonics Conference (IPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPCon.2019.8908375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Co-integrated neuromorphic photonic and electronic processors promise orders of magnitude improvements in both speed and energy efficiency over purely digital electronic approaches. We discuss neuromorphic photonic systems and their application to deep convolutional neural networks inference.