深度学习的神经形态光子学

V. Bangari, B. Marquez, A. Tait, M. Nahmias, T. F. de Lima, H. T. Peng, P. Prucnal, B. Shastri
{"title":"深度学习的神经形态光子学","authors":"V. Bangari, B. Marquez, A. Tait, M. Nahmias, T. F. de Lima, H. T. Peng, P. Prucnal, B. Shastri","doi":"10.1109/IPCon.2019.8908375","DOIUrl":null,"url":null,"abstract":"Co-integrated neuromorphic photonic and electronic processors promise orders of magnitude improvements in both speed and energy efficiency over purely digital electronic approaches. We discuss neuromorphic photonic systems and their application to deep convolutional neural networks inference.","PeriodicalId":314151,"journal":{"name":"2019 IEEE Photonics Conference (IPC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neuromorphic Photonics for Deep Learning\",\"authors\":\"V. Bangari, B. Marquez, A. Tait, M. Nahmias, T. F. de Lima, H. T. Peng, P. Prucnal, B. Shastri\",\"doi\":\"10.1109/IPCon.2019.8908375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Co-integrated neuromorphic photonic and electronic processors promise orders of magnitude improvements in both speed and energy efficiency over purely digital electronic approaches. We discuss neuromorphic photonic systems and their application to deep convolutional neural networks inference.\",\"PeriodicalId\":314151,\"journal\":{\"name\":\"2019 IEEE Photonics Conference (IPC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Photonics Conference (IPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPCon.2019.8908375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Photonics Conference (IPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPCon.2019.8908375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

与纯数字电子方法相比,协同集成的神经形态光子和电子处理器在速度和能源效率方面都有了数量级的提高。讨论了神经形态光子系统及其在深度卷积神经网络推理中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neuromorphic Photonics for Deep Learning
Co-integrated neuromorphic photonic and electronic processors promise orders of magnitude improvements in both speed and energy efficiency over purely digital electronic approaches. We discuss neuromorphic photonic systems and their application to deep convolutional neural networks inference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信