金属结构下自主传感器的感应功率传输

J. Albesa, M. Gasulla
{"title":"金属结构下自主传感器的感应功率传输","authors":"J. Albesa, M. Gasulla","doi":"10.1109/I2MTC.2012.6229658","DOIUrl":null,"url":null,"abstract":"This work proposes powering autonomous sensors via inductive links in presence of metallic structures. The intended application is occupancy and belt detection in removable vehicle seats. The final aim is to maximize the powering distance and minimize the influence of the metallic structures, which was achieved by using resonant networks and magnetic core materials for the coils. First, a theoretical analysis was carried out in order to identify critical parameters. Then, simulations were performed at a frequency of 130 kHz with three different coil types, two with ferrite-core coils and one with an air-core coil. Numerical results show that ferrite-core coils, in especial that with an ETD-core coil, are less affected by the presence of metallic structures. Finally, both the maximum achieved distance and the effect of a nearby metallic plate were assessed experimentally. Without the metallic plate, the air-core coils provided the maximum powering distance, thanks to its much larger winding diameter. However, with the metallic plate present the transferred power with the air-core coils to the load was insufficient for the intended application. On the other hand, the ferrite-core coils barely noticed the presence of the metallic plate, achieving the ETD-core coils the highest powering distance, around 3 cm.","PeriodicalId":387839,"journal":{"name":"2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Inductive power transfer for autonomous sensors in presence of metallic structures\",\"authors\":\"J. Albesa, M. Gasulla\",\"doi\":\"10.1109/I2MTC.2012.6229658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes powering autonomous sensors via inductive links in presence of metallic structures. The intended application is occupancy and belt detection in removable vehicle seats. The final aim is to maximize the powering distance and minimize the influence of the metallic structures, which was achieved by using resonant networks and magnetic core materials for the coils. First, a theoretical analysis was carried out in order to identify critical parameters. Then, simulations were performed at a frequency of 130 kHz with three different coil types, two with ferrite-core coils and one with an air-core coil. Numerical results show that ferrite-core coils, in especial that with an ETD-core coil, are less affected by the presence of metallic structures. Finally, both the maximum achieved distance and the effect of a nearby metallic plate were assessed experimentally. Without the metallic plate, the air-core coils provided the maximum powering distance, thanks to its much larger winding diameter. However, with the metallic plate present the transferred power with the air-core coils to the load was insufficient for the intended application. On the other hand, the ferrite-core coils barely noticed the presence of the metallic plate, achieving the ETD-core coils the highest powering distance, around 3 cm.\",\"PeriodicalId\":387839,\"journal\":{\"name\":\"2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2MTC.2012.6229658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2012.6229658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

这项工作建议在金属结构存在的情况下,通过感应链路为自主传感器供电。预期的应用是可移动车辆座椅的占用和皮带检测。最终目标是最大限度地提高供电距离,并尽量减少金属结构的影响,这是通过使用谐振网络和磁芯材料的线圈来实现的。首先进行了理论分析,确定了关键参数。然后,在130 kHz的频率下,用三种不同的线圈类型进行了仿真,两种是铁氧体铁芯线圈,一种是空芯线圈。数值结果表明,铁氧体铁芯线圈,特别是带etd铁芯线圈,受金属结构存在的影响较小。最后,实验评估了最大达到距离和附近金属板的影响。没有金属板,空芯线圈提供了最大的供电距离,由于其更大的绕组直径。然而,由于金属板存在,空芯线圈向负载传递的功率不足以满足预期的应用。另一方面,铁氧体核心线圈几乎没有注意到金属板的存在,实现etd核心线圈的最高功率距离,约3厘米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inductive power transfer for autonomous sensors in presence of metallic structures
This work proposes powering autonomous sensors via inductive links in presence of metallic structures. The intended application is occupancy and belt detection in removable vehicle seats. The final aim is to maximize the powering distance and minimize the influence of the metallic structures, which was achieved by using resonant networks and magnetic core materials for the coils. First, a theoretical analysis was carried out in order to identify critical parameters. Then, simulations were performed at a frequency of 130 kHz with three different coil types, two with ferrite-core coils and one with an air-core coil. Numerical results show that ferrite-core coils, in especial that with an ETD-core coil, are less affected by the presence of metallic structures. Finally, both the maximum achieved distance and the effect of a nearby metallic plate were assessed experimentally. Without the metallic plate, the air-core coils provided the maximum powering distance, thanks to its much larger winding diameter. However, with the metallic plate present the transferred power with the air-core coils to the load was insufficient for the intended application. On the other hand, the ferrite-core coils barely noticed the presence of the metallic plate, achieving the ETD-core coils the highest powering distance, around 3 cm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信