基于cramims的随机传感器网络测量反演二维场的研究

Shay Sagiv, H. Messer
{"title":"基于cramims的随机传感器网络测量反演二维场的研究","authors":"Shay Sagiv, H. Messer","doi":"10.1109/ICASSPW59220.2023.10193063","DOIUrl":null,"url":null,"abstract":"In this work we present a theoretical study on the performance of retrieving a 2-D field represented as a superposition of B-Spline 2-D patches, using measurements from sensors randomly located in the field. We considered 3 types of sensors: point-projection sensors, line-projection sensors, and surface-projection sensors. We compare the achievable retrieval performance using the different types of sensors, while keeping their nominal locations the same. The non-parametric modeling of the field allows us to present close-form expressions for the Cramér-Rao lower bound (CRLB) on the estimation errors of the field’s parameters, which indicate on the best possible performance, independent on the mapping algorithm used. The comparison of the CRLB using different types of sensors indicates on the best sampling strategy. The work was motivated by the problem of rain retrieval using either rain gauges (point-projection sensors) or Commercial Microwave Links - CMLs (line projection sensors). Surface projection sensors can represent CMLs sampling a moving rain field. The results are applied for the problem of estimating the accumulated rain over a given area.","PeriodicalId":158726,"journal":{"name":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Cramér Rao Based Study of 2-D Fields Retrieval By Measurements From a Random Sensor Network\",\"authors\":\"Shay Sagiv, H. Messer\",\"doi\":\"10.1109/ICASSPW59220.2023.10193063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present a theoretical study on the performance of retrieving a 2-D field represented as a superposition of B-Spline 2-D patches, using measurements from sensors randomly located in the field. We considered 3 types of sensors: point-projection sensors, line-projection sensors, and surface-projection sensors. We compare the achievable retrieval performance using the different types of sensors, while keeping their nominal locations the same. The non-parametric modeling of the field allows us to present close-form expressions for the Cramér-Rao lower bound (CRLB) on the estimation errors of the field’s parameters, which indicate on the best possible performance, independent on the mapping algorithm used. The comparison of the CRLB using different types of sensors indicates on the best sampling strategy. The work was motivated by the problem of rain retrieval using either rain gauges (point-projection sensors) or Commercial Microwave Links - CMLs (line projection sensors). Surface projection sensors can represent CMLs sampling a moving rain field. The results are applied for the problem of estimating the accumulated rain over a given area.\",\"PeriodicalId\":158726,\"journal\":{\"name\":\"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSPW59220.2023.10193063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSPW59220.2023.10193063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一项理论研究,利用随机位于该领域的传感器的测量值,检索表示为b样条二维斑块叠加的二维领域。我们考虑了3种类型的传感器:点投影传感器、线投影传感器和面投影传感器。我们比较了使用不同类型的传感器可实现的检索性能,同时保持其标称位置相同。该领域的非参数建模允许我们对该领域的参数估计误差的cram - rao下界(CRLB)表示接近形式的表达式,这表明了最佳的可能性能,独立于所使用的映射算法。通过对使用不同类型传感器的CRLB的比较,得出了最佳的采样策略。这项工作的动机是利用雨量计(点投影传感器)或商用微波链路- cml(线投影传感器)进行降雨检索的问题。表面投影传感器可以表示cml采样移动的雨场。将所得结果应用于估算给定区域的累积雨量问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Cramér Rao Based Study of 2-D Fields Retrieval By Measurements From a Random Sensor Network
In this work we present a theoretical study on the performance of retrieving a 2-D field represented as a superposition of B-Spline 2-D patches, using measurements from sensors randomly located in the field. We considered 3 types of sensors: point-projection sensors, line-projection sensors, and surface-projection sensors. We compare the achievable retrieval performance using the different types of sensors, while keeping their nominal locations the same. The non-parametric modeling of the field allows us to present close-form expressions for the Cramér-Rao lower bound (CRLB) on the estimation errors of the field’s parameters, which indicate on the best possible performance, independent on the mapping algorithm used. The comparison of the CRLB using different types of sensors indicates on the best sampling strategy. The work was motivated by the problem of rain retrieval using either rain gauges (point-projection sensors) or Commercial Microwave Links - CMLs (line projection sensors). Surface projection sensors can represent CMLs sampling a moving rain field. The results are applied for the problem of estimating the accumulated rain over a given area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信