用分块法提取术语

Adam Meyers, Zachary Glass, Angus B. Grieve-Smith, Yifan He, Shasha Liao, R. Grishman
{"title":"用分块法提取术语","authors":"Adam Meyers, Zachary Glass, Angus B. Grieve-Smith, Yifan He, Shasha Liao, R. Grishman","doi":"10.3115/v1/W14-6002","DOIUrl":null,"url":null,"abstract":"NLP definitions of Terminology are usually application-dependent. IR terms are noun sequences that characterize topics. Terms can also be arguments for relations like abbreviation, definition or IS-A. In contrast, this paper explores techniques for extracting terms fitting a broader definition: noun sequences specific to topics and not well-known to naive adults. We describe a chunkingbased approach, an evaluation, and applications to non-topic-specific relation extraction.","PeriodicalId":446117,"journal":{"name":"Proceedings of the COLING Workshop on Synchronic and Diachronic Approaches to Analyzing Technical Language","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Jargon-Term Extraction by Chunking\",\"authors\":\"Adam Meyers, Zachary Glass, Angus B. Grieve-Smith, Yifan He, Shasha Liao, R. Grishman\",\"doi\":\"10.3115/v1/W14-6002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NLP definitions of Terminology are usually application-dependent. IR terms are noun sequences that characterize topics. Terms can also be arguments for relations like abbreviation, definition or IS-A. In contrast, this paper explores techniques for extracting terms fitting a broader definition: noun sequences specific to topics and not well-known to naive adults. We describe a chunkingbased approach, an evaluation, and applications to non-topic-specific relation extraction.\",\"PeriodicalId\":446117,\"journal\":{\"name\":\"Proceedings of the COLING Workshop on Synchronic and Diachronic Approaches to Analyzing Technical Language\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the COLING Workshop on Synchronic and Diachronic Approaches to Analyzing Technical Language\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/v1/W14-6002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the COLING Workshop on Synchronic and Diachronic Approaches to Analyzing Technical Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/v1/W14-6002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

术语的NLP定义通常依赖于应用。IR术语是描述主题的名词序列。术语也可以作为诸如缩写、定义或IS-A等关系的参数。相比之下,本文探讨了提取符合更广泛定义的术语的技术:特定于主题的名词序列,不为幼稚的成年人所熟知。我们描述了一种基于分块的方法,一种评估方法,以及在非主题特定关系提取中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jargon-Term Extraction by Chunking
NLP definitions of Terminology are usually application-dependent. IR terms are noun sequences that characterize topics. Terms can also be arguments for relations like abbreviation, definition or IS-A. In contrast, this paper explores techniques for extracting terms fitting a broader definition: noun sequences specific to topics and not well-known to naive adults. We describe a chunkingbased approach, an evaluation, and applications to non-topic-specific relation extraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信