软件时间估计的回归方法

Yanne M. G. Soares, Roberta Fagundes
{"title":"软件时间估计的回归方法","authors":"Yanne M. G. Soares, Roberta Fagundes","doi":"10.1109/LA-CCI.2017.8285723","DOIUrl":null,"url":null,"abstract":"In actual scenery of the development industries, making good estimates is essential for the survival of organizations. Estimating much more than necessary can lead loss of new contracts and doing on the contrary can cause huge financial losses. Generating efficient time estimates is one of the fundamental points in software projects because it helps the clients to see how much time will be spent to develop the project through a schedule. Thus, this paper presents the performance of regression methods for software projects time estimation: linear regression, parametric quantile regression, and nonparametric kernel regression. The performance of the methods is assessed by the mean magnitude of relative errors (MMRE). Experiments were carried out using twelve projects data set from NASA repository. The results showed that kernel regression provides a versatile method of exploring a general relationship between variables and gives good predictions of software programming time yet to be made without reference to a fixed parametric model.","PeriodicalId":144567,"journal":{"name":"2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Software time estimation using regression methods\",\"authors\":\"Yanne M. G. Soares, Roberta Fagundes\",\"doi\":\"10.1109/LA-CCI.2017.8285723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In actual scenery of the development industries, making good estimates is essential for the survival of organizations. Estimating much more than necessary can lead loss of new contracts and doing on the contrary can cause huge financial losses. Generating efficient time estimates is one of the fundamental points in software projects because it helps the clients to see how much time will be spent to develop the project through a schedule. Thus, this paper presents the performance of regression methods for software projects time estimation: linear regression, parametric quantile regression, and nonparametric kernel regression. The performance of the methods is assessed by the mean magnitude of relative errors (MMRE). Experiments were carried out using twelve projects data set from NASA repository. The results showed that kernel regression provides a versatile method of exploring a general relationship between variables and gives good predictions of software programming time yet to be made without reference to a fixed parametric model.\",\"PeriodicalId\":144567,\"journal\":{\"name\":\"2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LA-CCI.2017.8285723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-CCI.2017.8285723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在开发行业的实际环境中,做出良好的评估对于组织的生存至关重要。估计太多可能会导致新合同的损失,而相反的做法可能会造成巨大的经济损失。生成有效的时间估计是软件项目的基本点之一,因为它可以帮助客户了解通过时间表开发项目将花费多少时间。因此,本文介绍了用于软件项目时间估计的回归方法的性能:线性回归、参数分位数回归和非参数核回归。用相对误差的平均幅度(MMRE)来评价方法的性能。实验使用了NASA知识库中的12个项目数据集。结果表明,核回归提供了一种探索变量之间一般关系的通用方法,并在不参考固定参数模型的情况下对软件编程时间进行了很好的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Software time estimation using regression methods
In actual scenery of the development industries, making good estimates is essential for the survival of organizations. Estimating much more than necessary can lead loss of new contracts and doing on the contrary can cause huge financial losses. Generating efficient time estimates is one of the fundamental points in software projects because it helps the clients to see how much time will be spent to develop the project through a schedule. Thus, this paper presents the performance of regression methods for software projects time estimation: linear regression, parametric quantile regression, and nonparametric kernel regression. The performance of the methods is assessed by the mean magnitude of relative errors (MMRE). Experiments were carried out using twelve projects data set from NASA repository. The results showed that kernel regression provides a versatile method of exploring a general relationship between variables and gives good predictions of software programming time yet to be made without reference to a fixed parametric model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信