投资组合选择中的偏度建模

Trung H. Le, A. Kourtis, Raphael N. Markellos
{"title":"投资组合选择中的偏度建模","authors":"Trung H. Le, A. Kourtis, Raphael N. Markellos","doi":"10.2139/ssrn.3708200","DOIUrl":null,"url":null,"abstract":"Despite half a century of research, we still do not know the best way to model skewness of financial returns. We address this question by comparing the predictive ability and associated portfolio performance of several prominent skewness models in a sample of ten international equity market indices. Models that employ information from the option markets provide the best outcomes overall. We develop an option-based model that accounts for the skewness risk premium. The new model produces the most informative forecasts of future skewness, the lowest prediction errors and the best portfolio performance in most of our tests.","PeriodicalId":209192,"journal":{"name":"ERN: Asset Pricing Models (Topic)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Skewness in Portfolio Choice\",\"authors\":\"Trung H. Le, A. Kourtis, Raphael N. Markellos\",\"doi\":\"10.2139/ssrn.3708200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite half a century of research, we still do not know the best way to model skewness of financial returns. We address this question by comparing the predictive ability and associated portfolio performance of several prominent skewness models in a sample of ten international equity market indices. Models that employ information from the option markets provide the best outcomes overall. We develop an option-based model that accounts for the skewness risk premium. The new model produces the most informative forecasts of future skewness, the lowest prediction errors and the best portfolio performance in most of our tests.\",\"PeriodicalId\":209192,\"journal\":{\"name\":\"ERN: Asset Pricing Models (Topic)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Asset Pricing Models (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3708200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Asset Pricing Models (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3708200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管进行了半个世纪的研究,我们仍然不知道建立金融回报偏度模型的最佳方法。我们通过比较十个国际股票市场指数样本中几个突出的偏度模型的预测能力和相关的投资组合表现来解决这个问题。采用期权市场信息的模型总体上提供了最好的结果。我们开发了一个基于期权的模型来解释偏度风险溢价。在我们的大多数测试中,新模型对未来偏度的预测信息量最大,预测误差最小,投资组合表现最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Skewness in Portfolio Choice
Despite half a century of research, we still do not know the best way to model skewness of financial returns. We address this question by comparing the predictive ability and associated portfolio performance of several prominent skewness models in a sample of ten international equity market indices. Models that employ information from the option markets provide the best outcomes overall. We develop an option-based model that accounts for the skewness risk premium. The new model produces the most informative forecasts of future skewness, the lowest prediction errors and the best portfolio performance in most of our tests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信