局部重力运动同步聚类算法

Liang Yan, Zhao Dongguo, Lu Xianguo, Jie Xiaoyuan, Wang Chenglin
{"title":"局部重力运动同步聚类算法","authors":"Liang Yan, Zhao Dongguo, Lu Xianguo, Jie Xiaoyuan, Wang Chenglin","doi":"10.1109/icmeas54189.2021.00044","DOIUrl":null,"url":null,"abstract":"We propose a new clustering method called LGKSC, which is an alternative model based on gravitational kinematics to simulate local synchronization. The difference from existing clustering algorithms is that the algorithm makes objects over time. The dynamics of interaction are gradually synchronized dynamically, forming a local cluster corresponding to the internal structure of the data set. LGKSC can determine clusters with any shape, size and density, and can identify the amount of clusters automatically. LGKSC can adaptively identify the neighbors of the data objects based on the Davies-Bouldin (DB) index, so it can choose the best clustering results. Experiments indicate that the proposed method may take more time to run, but the algorithm have advantages in detecting the amount and the accuracy of clusters.","PeriodicalId":374943,"journal":{"name":"2021 7th International Conference on Mechanical Engineering and Automation Science (ICMEAS)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Local Gravity Kinematics Synchronization Clustering Algorithm\",\"authors\":\"Liang Yan, Zhao Dongguo, Lu Xianguo, Jie Xiaoyuan, Wang Chenglin\",\"doi\":\"10.1109/icmeas54189.2021.00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new clustering method called LGKSC, which is an alternative model based on gravitational kinematics to simulate local synchronization. The difference from existing clustering algorithms is that the algorithm makes objects over time. The dynamics of interaction are gradually synchronized dynamically, forming a local cluster corresponding to the internal structure of the data set. LGKSC can determine clusters with any shape, size and density, and can identify the amount of clusters automatically. LGKSC can adaptively identify the neighbors of the data objects based on the Davies-Bouldin (DB) index, so it can choose the best clustering results. Experiments indicate that the proposed method may take more time to run, but the algorithm have advantages in detecting the amount and the accuracy of clusters.\",\"PeriodicalId\":374943,\"journal\":{\"name\":\"2021 7th International Conference on Mechanical Engineering and Automation Science (ICMEAS)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th International Conference on Mechanical Engineering and Automation Science (ICMEAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icmeas54189.2021.00044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Mechanical Engineering and Automation Science (ICMEAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icmeas54189.2021.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的聚类方法,称为LGKSC,这是一种基于重力运动学模拟局部同步的替代模型。与现有聚类算法的不同之处在于,该算法随着时间的推移生成对象。交互的动态逐渐动态同步,形成与数据集内部结构相对应的局部聚类。LGKSC可以确定任何形状、大小和密度的聚类,并可以自动识别聚类的数量。LGKSC可以基于DB (Davies-Bouldin)索引自适应识别数据对象的邻居,从而选择最佳聚类结果。实验表明,该方法运行时间较长,但在聚类数量和准确率检测方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Local Gravity Kinematics Synchronization Clustering Algorithm
We propose a new clustering method called LGKSC, which is an alternative model based on gravitational kinematics to simulate local synchronization. The difference from existing clustering algorithms is that the algorithm makes objects over time. The dynamics of interaction are gradually synchronized dynamically, forming a local cluster corresponding to the internal structure of the data set. LGKSC can determine clusters with any shape, size and density, and can identify the amount of clusters automatically. LGKSC can adaptively identify the neighbors of the data objects based on the Davies-Bouldin (DB) index, so it can choose the best clustering results. Experiments indicate that the proposed method may take more time to run, but the algorithm have advantages in detecting the amount and the accuracy of clusters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信