S. Sant, Qing-Tai Zhao, D. Buca, S. Mantl, A. Schenk
{"title":"gsn - sigesn异质隧道场效应管分析","authors":"S. Sant, Qing-Tai Zhao, D. Buca, S. Mantl, A. Schenk","doi":"10.1109/SISPAD.2014.6931579","DOIUrl":null,"url":null,"abstract":"Among the alloys of Group IV semiconductors the Germanium-Tin (GeSn) alloy is particularly interesting as it exhibits a small and direct band gap for a certain range of Sn content. This feature can be exploited for high-performance tunnel FET (TFET) application. The small direct band gap enhances the band-to-band-tunneling (BTBT) rate which results in a high on-current. In order to reduce the off-state leakage, Silicon-Germanium-Tin (SiGeSn) alloys can be used in the drain region of the TFET. Addition of Si to GeSn increases the band gap of the alloy, thus reducing the ambipolar behavior. Therefore, the GeSn/SiGeSn hetero-structure system is a promising candidate for TFET application. In this work, the performance of GeSn/SiGeSn TFETs is studied by combining the empirical pseudopotential method (EPM) with 2D/3D technology-computer-aided-design (TCAD) simulations of realistic geometries.","PeriodicalId":101858,"journal":{"name":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Analysis of GeSn-SiGeSn hetero-tunnel FETs\",\"authors\":\"S. Sant, Qing-Tai Zhao, D. Buca, S. Mantl, A. Schenk\",\"doi\":\"10.1109/SISPAD.2014.6931579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the alloys of Group IV semiconductors the Germanium-Tin (GeSn) alloy is particularly interesting as it exhibits a small and direct band gap for a certain range of Sn content. This feature can be exploited for high-performance tunnel FET (TFET) application. The small direct band gap enhances the band-to-band-tunneling (BTBT) rate which results in a high on-current. In order to reduce the off-state leakage, Silicon-Germanium-Tin (SiGeSn) alloys can be used in the drain region of the TFET. Addition of Si to GeSn increases the band gap of the alloy, thus reducing the ambipolar behavior. Therefore, the GeSn/SiGeSn hetero-structure system is a promising candidate for TFET application. In this work, the performance of GeSn/SiGeSn TFETs is studied by combining the empirical pseudopotential method (EPM) with 2D/3D technology-computer-aided-design (TCAD) simulations of realistic geometries.\",\"PeriodicalId\":101858,\"journal\":{\"name\":\"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2014.6931579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2014.6931579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Among the alloys of Group IV semiconductors the Germanium-Tin (GeSn) alloy is particularly interesting as it exhibits a small and direct band gap for a certain range of Sn content. This feature can be exploited for high-performance tunnel FET (TFET) application. The small direct band gap enhances the band-to-band-tunneling (BTBT) rate which results in a high on-current. In order to reduce the off-state leakage, Silicon-Germanium-Tin (SiGeSn) alloys can be used in the drain region of the TFET. Addition of Si to GeSn increases the band gap of the alloy, thus reducing the ambipolar behavior. Therefore, the GeSn/SiGeSn hetero-structure system is a promising candidate for TFET application. In this work, the performance of GeSn/SiGeSn TFETs is studied by combining the empirical pseudopotential method (EPM) with 2D/3D technology-computer-aided-design (TCAD) simulations of realistic geometries.