堆栈溢出中软件文档质量的两个观点

Mathias Ellmann, M. Schnecke
{"title":"堆栈溢出中软件文档质量的两个观点","authors":"Mathias Ellmann, M. Schnecke","doi":"10.1145/3283812.3283816","DOIUrl":null,"url":null,"abstract":"This paper studies the software documentation quality in Stack Overflow from two perspectives: the questioners’ who are accepting answers and the community’s who is voting for answers. We show what developers can do to increase the chance that their questions or answers get accepted by the community or by the questioners. We found different expectations of what information such as code or images should be included in a question or an answer. We evaluated six different quality indicators (such as Flesch Reading Ease or images) which a developer should consider before posting a question and an answer. In addition, we found different quality indicators for different types of questions, in particular error, discrepancy, and how-to questions. Finally we use a supervised machine-learning algorithm to predict when an answer will be accepted or voted.","PeriodicalId":231305,"journal":{"name":"Proceedings of the 4th ACM SIGSOFT International Workshop on NLP for Software Engineering","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Two perspectives on software documentation quality in stack overflow\",\"authors\":\"Mathias Ellmann, M. Schnecke\",\"doi\":\"10.1145/3283812.3283816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the software documentation quality in Stack Overflow from two perspectives: the questioners’ who are accepting answers and the community’s who is voting for answers. We show what developers can do to increase the chance that their questions or answers get accepted by the community or by the questioners. We found different expectations of what information such as code or images should be included in a question or an answer. We evaluated six different quality indicators (such as Flesch Reading Ease or images) which a developer should consider before posting a question and an answer. In addition, we found different quality indicators for different types of questions, in particular error, discrepancy, and how-to questions. Finally we use a supervised machine-learning algorithm to predict when an answer will be accepted or voted.\",\"PeriodicalId\":231305,\"journal\":{\"name\":\"Proceedings of the 4th ACM SIGSOFT International Workshop on NLP for Software Engineering\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th ACM SIGSOFT International Workshop on NLP for Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3283812.3283816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th ACM SIGSOFT International Workshop on NLP for Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3283812.3283816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文从两个角度对Stack Overflow中的软件文档质量进行了研究:接受答案的提问者和对答案进行投票的社区。我们展示了开发者可以做些什么来增加他们的问题或答案被社区或提问者接受的机会。我们发现人们对问题或答案中应该包含什么信息(如代码或图像)有不同的期望。我们评估了开发者在发布问题和答案之前应该考虑的6个不同的质量指标(如Flesch Reading Ease或images)。此外,我们发现不同类型的问题有不同的质量指标,特别是错误、差异和how-to问题。最后,我们使用有监督的机器学习算法来预测答案何时被接受或投票。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two perspectives on software documentation quality in stack overflow
This paper studies the software documentation quality in Stack Overflow from two perspectives: the questioners’ who are accepting answers and the community’s who is voting for answers. We show what developers can do to increase the chance that their questions or answers get accepted by the community or by the questioners. We found different expectations of what information such as code or images should be included in a question or an answer. We evaluated six different quality indicators (such as Flesch Reading Ease or images) which a developer should consider before posting a question and an answer. In addition, we found different quality indicators for different types of questions, in particular error, discrepancy, and how-to questions. Finally we use a supervised machine-learning algorithm to predict when an answer will be accepted or voted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信