基于数据并行和并发并行的BWA MEM算法性能改进

N. Kathiresan, M. Temanni, Rashid J. Al-Ali
{"title":"基于数据并行和并发并行的BWA MEM算法性能改进","authors":"N. Kathiresan, M. Temanni, Rashid J. Al-Ali","doi":"10.1109/PDGC.2014.7030780","DOIUrl":null,"url":null,"abstract":"Burrows-Wheeler Transform (BWT) is the widely used data compression technique in the next-generation sequencing (NGS) analysis. Due to the advancement in the NGS technology, the genome data size was increased rapidly and these higher volumes of genome data need to be processed by empirical parallelism. Generally, these NGS data will be processed by traditional parallel processing approaches like (i) thread parallelization (ii) Data parallelization and (iii) Concurrent parallelization, which are their own performance bottlenecks in, thread scalability, scattering/gathering of data and memory bandwidth limitations respectively. To eliminate these drawbacks, we introduced the hybrid parallelization approach called “data-parallel with concurrent parallelization” to process our genome alignment. We used BWA MEM algorithm for aligning human genome sequence, which are dominated by huge memory intensive operations and the performance is limited due to cache/TLB misses. To eliminate the cache/TLB miss, the genome data is partitioned into multiple pieces (i.e., reducing the read size) using data parallelization and concurrently processing these multiple pieces of genome data within the same cache/memory hierarchy. Hence, the performance of proposed data-parallel with concurrent parallelization is 45% better than traditional parallelization approaches. Additionally, we provided proof of concept to process higher volume of genome data using BWA MEM algorithm on the high-end desktop machines.","PeriodicalId":311953,"journal":{"name":"2014 International Conference on Parallel, Distributed and Grid Computing","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Performance improvement of BWA MEM algorithm using data-parallel with concurrent parallelization\",\"authors\":\"N. Kathiresan, M. Temanni, Rashid J. Al-Ali\",\"doi\":\"10.1109/PDGC.2014.7030780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Burrows-Wheeler Transform (BWT) is the widely used data compression technique in the next-generation sequencing (NGS) analysis. Due to the advancement in the NGS technology, the genome data size was increased rapidly and these higher volumes of genome data need to be processed by empirical parallelism. Generally, these NGS data will be processed by traditional parallel processing approaches like (i) thread parallelization (ii) Data parallelization and (iii) Concurrent parallelization, which are their own performance bottlenecks in, thread scalability, scattering/gathering of data and memory bandwidth limitations respectively. To eliminate these drawbacks, we introduced the hybrid parallelization approach called “data-parallel with concurrent parallelization” to process our genome alignment. We used BWA MEM algorithm for aligning human genome sequence, which are dominated by huge memory intensive operations and the performance is limited due to cache/TLB misses. To eliminate the cache/TLB miss, the genome data is partitioned into multiple pieces (i.e., reducing the read size) using data parallelization and concurrently processing these multiple pieces of genome data within the same cache/memory hierarchy. Hence, the performance of proposed data-parallel with concurrent parallelization is 45% better than traditional parallelization approaches. Additionally, we provided proof of concept to process higher volume of genome data using BWA MEM algorithm on the high-end desktop machines.\",\"PeriodicalId\":311953,\"journal\":{\"name\":\"2014 International Conference on Parallel, Distributed and Grid Computing\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Parallel, Distributed and Grid Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDGC.2014.7030780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Parallel, Distributed and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDGC.2014.7030780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

Burrows-Wheeler变换(BWT)是下一代测序(NGS)分析中广泛使用的数据压缩技术。由于NGS技术的进步,基因组数据量迅速增加,这些更大的基因组数据需要通过经验并行处理。一般来说,这些NGS数据将通过传统的并行处理方法进行处理,如(i)线程并行化(ii)数据并行化和(iii)并发并行化,这些方法分别在线程可伸缩性、数据的分散/收集和内存带宽限制方面存在性能瓶颈。为了消除这些缺点,我们引入了称为“数据并行与并发并行”的混合并行化方法来处理我们的基因组对齐。本文采用BWA MEM算法对人类基因组序列进行比对,该算法存在大量内存密集型操作,且由于缓存/TLB缺失导致性能受限。为了消除缓存/TLB缺失,使用数据并行化将基因组数据划分为多个片段(即减少读取大小),并在相同的缓存/内存层次结构中并发处理这些多片段基因组数据。因此,采用并发并行化方法的数据并行性能比传统并行化方法提高45%。此外,我们还提供了在高端台式计算机上使用BWA MEM算法处理更大容量基因组数据的概念证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance improvement of BWA MEM algorithm using data-parallel with concurrent parallelization
Burrows-Wheeler Transform (BWT) is the widely used data compression technique in the next-generation sequencing (NGS) analysis. Due to the advancement in the NGS technology, the genome data size was increased rapidly and these higher volumes of genome data need to be processed by empirical parallelism. Generally, these NGS data will be processed by traditional parallel processing approaches like (i) thread parallelization (ii) Data parallelization and (iii) Concurrent parallelization, which are their own performance bottlenecks in, thread scalability, scattering/gathering of data and memory bandwidth limitations respectively. To eliminate these drawbacks, we introduced the hybrid parallelization approach called “data-parallel with concurrent parallelization” to process our genome alignment. We used BWA MEM algorithm for aligning human genome sequence, which are dominated by huge memory intensive operations and the performance is limited due to cache/TLB misses. To eliminate the cache/TLB miss, the genome data is partitioned into multiple pieces (i.e., reducing the read size) using data parallelization and concurrently processing these multiple pieces of genome data within the same cache/memory hierarchy. Hence, the performance of proposed data-parallel with concurrent parallelization is 45% better than traditional parallelization approaches. Additionally, we provided proof of concept to process higher volume of genome data using BWA MEM algorithm on the high-end desktop machines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信