{"title":"利用前额生物信号控制智能轮椅","authors":"Lai Wei, Huosheng Hu, Kui Yuan","doi":"10.1109/ROBIO.2009.4912988","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method to classify human facial movement based on multi-channel forehead bio-signals. Five face movements form three face regions: forehead, eye and jaw are selected and classified in back propagation artificial neural networks (BPANN) by using a combination of transient and steady features from EMG and EOG waveforms. The identified face movements are subsequently employed to generate five control commands for controlling a simulated Intelligent Wheelchair. A human-machine interface (HMI) is designed to map movement patterns into corresponding control commands via a logic control table. The simulation result shows the feasibility and performance of the proposed system, which can be extended into real-world applications as a control interface for disabled and elderly users.","PeriodicalId":321332,"journal":{"name":"2008 IEEE International Conference on Robotics and Biomimetics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"Use of forehead bio-signals for controlling an Intelligent Wheelchair\",\"authors\":\"Lai Wei, Huosheng Hu, Kui Yuan\",\"doi\":\"10.1109/ROBIO.2009.4912988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel method to classify human facial movement based on multi-channel forehead bio-signals. Five face movements form three face regions: forehead, eye and jaw are selected and classified in back propagation artificial neural networks (BPANN) by using a combination of transient and steady features from EMG and EOG waveforms. The identified face movements are subsequently employed to generate five control commands for controlling a simulated Intelligent Wheelchair. A human-machine interface (HMI) is designed to map movement patterns into corresponding control commands via a logic control table. The simulation result shows the feasibility and performance of the proposed system, which can be extended into real-world applications as a control interface for disabled and elderly users.\",\"PeriodicalId\":321332,\"journal\":{\"name\":\"2008 IEEE International Conference on Robotics and Biomimetics\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Robotics and Biomimetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2009.4912988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Robotics and Biomimetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2009.4912988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Use of forehead bio-signals for controlling an Intelligent Wheelchair
This paper presents a novel method to classify human facial movement based on multi-channel forehead bio-signals. Five face movements form three face regions: forehead, eye and jaw are selected and classified in back propagation artificial neural networks (BPANN) by using a combination of transient and steady features from EMG and EOG waveforms. The identified face movements are subsequently employed to generate five control commands for controlling a simulated Intelligent Wheelchair. A human-machine interface (HMI) is designed to map movement patterns into corresponding control commands via a logic control table. The simulation result shows the feasibility and performance of the proposed system, which can be extended into real-world applications as a control interface for disabled and elderly users.