利用前额生物信号控制智能轮椅

Lai Wei, Huosheng Hu, Kui Yuan
{"title":"利用前额生物信号控制智能轮椅","authors":"Lai Wei, Huosheng Hu, Kui Yuan","doi":"10.1109/ROBIO.2009.4912988","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method to classify human facial movement based on multi-channel forehead bio-signals. Five face movements form three face regions: forehead, eye and jaw are selected and classified in back propagation artificial neural networks (BPANN) by using a combination of transient and steady features from EMG and EOG waveforms. The identified face movements are subsequently employed to generate five control commands for controlling a simulated Intelligent Wheelchair. A human-machine interface (HMI) is designed to map movement patterns into corresponding control commands via a logic control table. The simulation result shows the feasibility and performance of the proposed system, which can be extended into real-world applications as a control interface for disabled and elderly users.","PeriodicalId":321332,"journal":{"name":"2008 IEEE International Conference on Robotics and Biomimetics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"Use of forehead bio-signals for controlling an Intelligent Wheelchair\",\"authors\":\"Lai Wei, Huosheng Hu, Kui Yuan\",\"doi\":\"10.1109/ROBIO.2009.4912988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel method to classify human facial movement based on multi-channel forehead bio-signals. Five face movements form three face regions: forehead, eye and jaw are selected and classified in back propagation artificial neural networks (BPANN) by using a combination of transient and steady features from EMG and EOG waveforms. The identified face movements are subsequently employed to generate five control commands for controlling a simulated Intelligent Wheelchair. A human-machine interface (HMI) is designed to map movement patterns into corresponding control commands via a logic control table. The simulation result shows the feasibility and performance of the proposed system, which can be extended into real-world applications as a control interface for disabled and elderly users.\",\"PeriodicalId\":321332,\"journal\":{\"name\":\"2008 IEEE International Conference on Robotics and Biomimetics\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Robotics and Biomimetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2009.4912988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Robotics and Biomimetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2009.4912988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

摘要

提出了一种基于多通道前额生物信号的人脸运动分类方法。通过结合EMG和EOG波形的瞬态和稳态特征,在反向传播人工神经网络(BPANN)中选择并分类了前额、眼睛和下巴三个面部区域的五种面部运动。识别的面部动作随后被用来生成五个控制命令来控制模拟的智能轮椅。设计了人机界面(HMI),通过逻辑控制表将运动模式映射为相应的控制命令。仿真结果表明了该系统的可行性和性能,可以作为残疾人和老年人的控制接口扩展到实际应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of forehead bio-signals for controlling an Intelligent Wheelchair
This paper presents a novel method to classify human facial movement based on multi-channel forehead bio-signals. Five face movements form three face regions: forehead, eye and jaw are selected and classified in back propagation artificial neural networks (BPANN) by using a combination of transient and steady features from EMG and EOG waveforms. The identified face movements are subsequently employed to generate five control commands for controlling a simulated Intelligent Wheelchair. A human-machine interface (HMI) is designed to map movement patterns into corresponding control commands via a logic control table. The simulation result shows the feasibility and performance of the proposed system, which can be extended into real-world applications as a control interface for disabled and elderly users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信