结合CNN和LSTM改进的XSS攻击检测工具

Caio Lente, R. Hirata Jr., D. Batista
{"title":"结合CNN和LSTM改进的XSS攻击检测工具","authors":"Caio Lente, R. Hirata Jr., D. Batista","doi":"10.5753/sbseg_estendido.2021.17333","DOIUrl":null,"url":null,"abstract":"Cross-Site Scripting (XSS) is still a significant threat to web applications. By combining Convolutional Neural Networks (CNN) with Long ShortTerm Memory (LSTM) techniques, researchers have developed a deep learning system called 3C-LSTM that achieves upwards of 99.4% accuracy when predicting whether a new URL corresponds to a benign locator or an XSS attack. This paper improves on 3C-LSTM by proposing different network architectures and validation strategies and identifying the optimal structure for a more efficient, yet similarly accurate, version of 3C-LSTM. The authors identify larger batch sizes, smaller inputs, and cross-validation removal as modifications to achieve a speedup of around 3.9 times in the training step.","PeriodicalId":102643,"journal":{"name":"Anais Estendidos do XXI Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg Estendido 2021)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Improved Tool for Detection of XSS Attacks by Combining CNN with LSTM\",\"authors\":\"Caio Lente, R. Hirata Jr., D. Batista\",\"doi\":\"10.5753/sbseg_estendido.2021.17333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cross-Site Scripting (XSS) is still a significant threat to web applications. By combining Convolutional Neural Networks (CNN) with Long ShortTerm Memory (LSTM) techniques, researchers have developed a deep learning system called 3C-LSTM that achieves upwards of 99.4% accuracy when predicting whether a new URL corresponds to a benign locator or an XSS attack. This paper improves on 3C-LSTM by proposing different network architectures and validation strategies and identifying the optimal structure for a more efficient, yet similarly accurate, version of 3C-LSTM. The authors identify larger batch sizes, smaller inputs, and cross-validation removal as modifications to achieve a speedup of around 3.9 times in the training step.\",\"PeriodicalId\":102643,\"journal\":{\"name\":\"Anais Estendidos do XXI Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg Estendido 2021)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais Estendidos do XXI Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg Estendido 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbseg_estendido.2021.17333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do XXI Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg Estendido 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbseg_estendido.2021.17333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

跨站点脚本(XSS)仍然是web应用程序的一个重大威胁。通过将卷积神经网络(CNN)与长短期记忆(LSTM)技术相结合,研究人员开发了一种名为3g -LSTM的深度学习系统,在预测新URL是否对应于良性定位器或XSS攻击时,准确率高达99.4%。本文对3C-LSTM进行了改进,提出了不同的网络架构和验证策略,并确定了更有效但同样准确的3C-LSTM版本的最佳结构。作者确定了更大的批量大小,更小的输入,以及交叉验证的删除作为修改,以在训练步骤中实现大约3.9倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Tool for Detection of XSS Attacks by Combining CNN with LSTM
Cross-Site Scripting (XSS) is still a significant threat to web applications. By combining Convolutional Neural Networks (CNN) with Long ShortTerm Memory (LSTM) techniques, researchers have developed a deep learning system called 3C-LSTM that achieves upwards of 99.4% accuracy when predicting whether a new URL corresponds to a benign locator or an XSS attack. This paper improves on 3C-LSTM by proposing different network architectures and validation strategies and identifying the optimal structure for a more efficient, yet similarly accurate, version of 3C-LSTM. The authors identify larger batch sizes, smaller inputs, and cross-validation removal as modifications to achieve a speedup of around 3.9 times in the training step.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信