噪声压缩相位检索的误差范围

B. Bodmann, Nathaniel Hammen
{"title":"噪声压缩相位检索的误差范围","authors":"B. Bodmann, Nathaniel Hammen","doi":"10.1109/SAMPTA.2015.7148909","DOIUrl":null,"url":null,"abstract":"This paper provides a random complex measurement matrix and an algorithm for complex phase retrieval of sparse or approximately sparse signals from the noisy magnitudes of the measurements obtained with this matrix. We compute explicit error bounds for the recovery which depend on the noise-to-signal ratio, the sparsity s, the number of measured quantitites m, and the dimension of the signal N. This requires m to be of the order of s ln(N/s). In comparison with sparse recovery from complex linear measurements, our phase retrieval algorithm requires six times the number of measured quantities.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Error bounds for noisy compressive phase retrieval\",\"authors\":\"B. Bodmann, Nathaniel Hammen\",\"doi\":\"10.1109/SAMPTA.2015.7148909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a random complex measurement matrix and an algorithm for complex phase retrieval of sparse or approximately sparse signals from the noisy magnitudes of the measurements obtained with this matrix. We compute explicit error bounds for the recovery which depend on the noise-to-signal ratio, the sparsity s, the number of measured quantitites m, and the dimension of the signal N. This requires m to be of the order of s ln(N/s). In comparison with sparse recovery from complex linear measurements, our phase retrieval algorithm requires six times the number of measured quantities.\",\"PeriodicalId\":311830,\"journal\":{\"name\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMPTA.2015.7148909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提供了一种随机复测量矩阵,并给出了一种从该矩阵得到的测量噪声值中提取稀疏或近似稀疏信号复相位的算法。我们计算了恢复的显式误差界限,这取决于噪声与信号的比、稀疏度s、测量量的数量m和信号的维数N。这要求m是s ln(N/s)的数量级。与复杂线性测量的稀疏恢复相比,我们的相位恢复算法需要6倍的测量量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error bounds for noisy compressive phase retrieval
This paper provides a random complex measurement matrix and an algorithm for complex phase retrieval of sparse or approximately sparse signals from the noisy magnitudes of the measurements obtained with this matrix. We compute explicit error bounds for the recovery which depend on the noise-to-signal ratio, the sparsity s, the number of measured quantitites m, and the dimension of the signal N. This requires m to be of the order of s ln(N/s). In comparison with sparse recovery from complex linear measurements, our phase retrieval algorithm requires six times the number of measured quantities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信