学习关注目标提议

Zijing Chen, Xinhua You, Jun Li
{"title":"学习关注目标提议","authors":"Zijing Chen, Xinhua You, Jun Li","doi":"10.1109/SPAC.2017.8304319","DOIUrl":null,"url":null,"abstract":"Object proposal generators address the wasteful exhaustive search of the sliding window scheme in visual object detection and have been shown effective. However, the number of candidate windows is still large in order to ensure full coverage of potential objects. This paper presents a complementary technique that aims to work with any proposal generating system, amending the workflow from “propose-assess” to “propose-adjust-assess”. The adjustment serves as an auto-focus mechanism for the system and reduces the number of object proposals to be processed. The auto-focus is realized by two learning-based transformation models, one translating and the other deforming the windows towards better alignments of the objects, which are trained for identifying generic objects using image cues. Experiments on reallife image data sets show that the proposed technique can reduce the number of proposals without loss of performance.","PeriodicalId":161647,"journal":{"name":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning to focus for object proposals\",\"authors\":\"Zijing Chen, Xinhua You, Jun Li\",\"doi\":\"10.1109/SPAC.2017.8304319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object proposal generators address the wasteful exhaustive search of the sliding window scheme in visual object detection and have been shown effective. However, the number of candidate windows is still large in order to ensure full coverage of potential objects. This paper presents a complementary technique that aims to work with any proposal generating system, amending the workflow from “propose-assess” to “propose-adjust-assess”. The adjustment serves as an auto-focus mechanism for the system and reduces the number of object proposals to be processed. The auto-focus is realized by two learning-based transformation models, one translating and the other deforming the windows towards better alignments of the objects, which are trained for identifying generic objects using image cues. Experiments on reallife image data sets show that the proposed technique can reduce the number of proposals without loss of performance.\",\"PeriodicalId\":161647,\"journal\":{\"name\":\"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAC.2017.8304319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2017.8304319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目标建议生成器解决了滑动窗口方案在视觉目标检测中浪费的穷举搜索问题,并已被证明是有效的。然而,候选窗口的数量仍然很大,以确保潜在目标的完全覆盖。本文提出了一种补充技术,旨在与任何提案生成系统一起工作,将工作流程从“提案-评估”修改为“提案-调整-评估”。该调整作为系统的自动对焦机制,减少了要处理的对象建议的数量。自动对焦是通过两个基于学习的转换模型来实现的,一个是转换窗口,另一个是变形窗口,使其更好地对准对象,这两个模型被训练用于使用图像线索识别通用对象。在真实图像数据集上的实验表明,该方法可以在不损失性能的情况下减少建议的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning to focus for object proposals
Object proposal generators address the wasteful exhaustive search of the sliding window scheme in visual object detection and have been shown effective. However, the number of candidate windows is still large in order to ensure full coverage of potential objects. This paper presents a complementary technique that aims to work with any proposal generating system, amending the workflow from “propose-assess” to “propose-adjust-assess”. The adjustment serves as an auto-focus mechanism for the system and reduces the number of object proposals to be processed. The auto-focus is realized by two learning-based transformation models, one translating and the other deforming the windows towards better alignments of the objects, which are trained for identifying generic objects using image cues. Experiments on reallife image data sets show that the proposed technique can reduce the number of proposals without loss of performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信