回顾仿射不变性

Evgeni Begelfor, M. Werman
{"title":"回顾仿射不变性","authors":"Evgeni Begelfor, M. Werman","doi":"10.1109/CVPR.2006.50","DOIUrl":null,"url":null,"abstract":"This paper proposes a Riemannian geometric framework to compute averages and distributions of point configurations so that different configurations up to affine transformations are considered to be the same. The algorithms are fast and proven to be robust both theoretically and empirically. The utility of this framework is shown in a number of affine invariant clustering algorithms on image point data.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"158","resultStr":"{\"title\":\"Affine Invariance Revisited\",\"authors\":\"Evgeni Begelfor, M. Werman\",\"doi\":\"10.1109/CVPR.2006.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a Riemannian geometric framework to compute averages and distributions of point configurations so that different configurations up to affine transformations are considered to be the same. The algorithms are fast and proven to be robust both theoretically and empirically. The utility of this framework is shown in a number of affine invariant clustering algorithms on image point data.\",\"PeriodicalId\":421737,\"journal\":{\"name\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"158\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2006.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 158

摘要

本文提出了一种计算点构型的平均和分布的黎曼几何框架,使不同的构型直到仿射变换都被认为是相同的。该算法速度快,具有理论和经验上的鲁棒性。该框架的实用性体现在图像点数据的仿射不变聚类算法中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Affine Invariance Revisited
This paper proposes a Riemannian geometric framework to compute averages and distributions of point configurations so that different configurations up to affine transformations are considered to be the same. The algorithms are fast and proven to be robust both theoretically and empirically. The utility of this framework is shown in a number of affine invariant clustering algorithms on image point data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信