{"title":"通过电流密度和载流子注入技术提高三端硅CMOS LED的效率","authors":"L. Snyman, J. Matjila, H. Aharoni, M. Plessis","doi":"10.1109/EDMO.2004.1412402","DOIUrl":null,"url":null,"abstract":"In this paper we report on the dependency of quantum efficiency of an avalanching light emitting junction on the current from an adjacent lying forward biased junction. The phenomenon is observed in a three terminal silicon CMOS bipolar junction light emitting device (Si CMOS BJT LED). Our observations show that the overall quantum efficiency and light emission from these type of devices can be improved to the N/sub Q/=10/sup -4/ regime. The device has the potential of being fully integratable with any standard CMOS integrated circuitry with no adaptation to the CMOS design and processing procedures and light emissions can be confined to submicron dimensions. The optical emissions is about four orders higher than the low frequency detectivity for silicon CMOS detectors of comparable dimension. Our two junction, three terminal device also enable modulation of the light emission by a third terminal contact while using two terminals for biasing. The reverse bias avalanche configuration of the avalanching light emitting junction offers modulation capabilities of the device to within the GHz range.","PeriodicalId":424447,"journal":{"name":"12th International Symposium on Electron Devices for Microwave and Optoelectronic Applications, 2004. EDMO 2004.","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Increasing the efficiency of three terminal silicon CMOS LED's through current density and carrier injection techniques\",\"authors\":\"L. Snyman, J. Matjila, H. Aharoni, M. Plessis\",\"doi\":\"10.1109/EDMO.2004.1412402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we report on the dependency of quantum efficiency of an avalanching light emitting junction on the current from an adjacent lying forward biased junction. The phenomenon is observed in a three terminal silicon CMOS bipolar junction light emitting device (Si CMOS BJT LED). Our observations show that the overall quantum efficiency and light emission from these type of devices can be improved to the N/sub Q/=10/sup -4/ regime. The device has the potential of being fully integratable with any standard CMOS integrated circuitry with no adaptation to the CMOS design and processing procedures and light emissions can be confined to submicron dimensions. The optical emissions is about four orders higher than the low frequency detectivity for silicon CMOS detectors of comparable dimension. Our two junction, three terminal device also enable modulation of the light emission by a third terminal contact while using two terminals for biasing. The reverse bias avalanche configuration of the avalanching light emitting junction offers modulation capabilities of the device to within the GHz range.\",\"PeriodicalId\":424447,\"journal\":{\"name\":\"12th International Symposium on Electron Devices for Microwave and Optoelectronic Applications, 2004. EDMO 2004.\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"12th International Symposium on Electron Devices for Microwave and Optoelectronic Applications, 2004. EDMO 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDMO.2004.1412402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Symposium on Electron Devices for Microwave and Optoelectronic Applications, 2004. EDMO 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDMO.2004.1412402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Increasing the efficiency of three terminal silicon CMOS LED's through current density and carrier injection techniques
In this paper we report on the dependency of quantum efficiency of an avalanching light emitting junction on the current from an adjacent lying forward biased junction. The phenomenon is observed in a three terminal silicon CMOS bipolar junction light emitting device (Si CMOS BJT LED). Our observations show that the overall quantum efficiency and light emission from these type of devices can be improved to the N/sub Q/=10/sup -4/ regime. The device has the potential of being fully integratable with any standard CMOS integrated circuitry with no adaptation to the CMOS design and processing procedures and light emissions can be confined to submicron dimensions. The optical emissions is about four orders higher than the low frequency detectivity for silicon CMOS detectors of comparable dimension. Our two junction, three terminal device also enable modulation of the light emission by a third terminal contact while using two terminals for biasing. The reverse bias avalanche configuration of the avalanching light emitting junction offers modulation capabilities of the device to within the GHz range.