多目标离散优化问题的一种新的估计分布算法

Glauber Botelho, André Britto, Leila Silva
{"title":"多目标离散优化问题的一种新的估计分布算法","authors":"Glauber Botelho, André Britto, Leila Silva","doi":"10.1109/BRACIS.2016.081","DOIUrl":null,"url":null,"abstract":"Many-Objective Optimization Problems are problems that have more than three objective functions. For a small number of objective functions, Multi-Objective Evolutionary Algorithms provide good results, but when the number of objective functions grows, these algorithms present scalability problems. In this paper we focus on Multi-Objective Discrete Problems (MODO) with many objectives. We propose a new Estimation Distributed Algorithm (EDA) applied to MODO, called ArchEDA, with the aim of improving the results achived by MOEAs. The main idea is to combine EDA with archiving methods, in order to select the solutions used on the probabilistic models. To evaluate Arch-EDA we apply the algorithm to the 0/1 Multi-Objective Knapsack Problem, considering two to ten objective functions and a set of benchmarking instances. The results achieved are compared, through statistical analysis, with the NSGA-III, NSGA-II and SPEA2 algorithms.","PeriodicalId":183149,"journal":{"name":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Estimation Distributed Algorithm Applied to a Many-Objective Discrete Optimization Problem\",\"authors\":\"Glauber Botelho, André Britto, Leila Silva\",\"doi\":\"10.1109/BRACIS.2016.081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many-Objective Optimization Problems are problems that have more than three objective functions. For a small number of objective functions, Multi-Objective Evolutionary Algorithms provide good results, but when the number of objective functions grows, these algorithms present scalability problems. In this paper we focus on Multi-Objective Discrete Problems (MODO) with many objectives. We propose a new Estimation Distributed Algorithm (EDA) applied to MODO, called ArchEDA, with the aim of improving the results achived by MOEAs. The main idea is to combine EDA with archiving methods, in order to select the solutions used on the probabilistic models. To evaluate Arch-EDA we apply the algorithm to the 0/1 Multi-Objective Knapsack Problem, considering two to ten objective functions and a set of benchmarking instances. The results achieved are compared, through statistical analysis, with the NSGA-III, NSGA-II and SPEA2 algorithms.\",\"PeriodicalId\":183149,\"journal\":{\"name\":\"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRACIS.2016.081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2016.081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多目标优化问题是具有三个以上目标函数的问题。对于目标函数数量较少的情况,多目标进化算法可以提供较好的结果,但当目标函数数量增加时,这些算法存在可扩展性问题。本文主要研究多目标离散问题(MODO)。我们提出了一种新的估计分布式算法(EDA),称为ArchEDA,用于MODO,目的是改进moea的结果。其主要思想是将EDA与归档方法相结合,以选择在概率模型上使用的解决方案。为了评估Arch-EDA,我们将算法应用于0/1多目标背包问题,考虑2到10个目标函数和一组基准实例。通过统计分析,将所得结果与NSGA-III、NSGA-II和SPEA2算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Estimation Distributed Algorithm Applied to a Many-Objective Discrete Optimization Problem
Many-Objective Optimization Problems are problems that have more than three objective functions. For a small number of objective functions, Multi-Objective Evolutionary Algorithms provide good results, but when the number of objective functions grows, these algorithms present scalability problems. In this paper we focus on Multi-Objective Discrete Problems (MODO) with many objectives. We propose a new Estimation Distributed Algorithm (EDA) applied to MODO, called ArchEDA, with the aim of improving the results achived by MOEAs. The main idea is to combine EDA with archiving methods, in order to select the solutions used on the probabilistic models. To evaluate Arch-EDA we apply the algorithm to the 0/1 Multi-Objective Knapsack Problem, considering two to ten objective functions and a set of benchmarking instances. The results achieved are compared, through statistical analysis, with the NSGA-III, NSGA-II and SPEA2 algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信