具有噪声协方差更新的生物分子系统卡尔曼滤波方法

Abhishek Dey, Kushal Chakrabarti, K. Gola, Shaunak Sen
{"title":"具有噪声协方差更新的生物分子系统卡尔曼滤波方法","authors":"Abhishek Dey, Kushal Chakrabarti, K. Gola, Shaunak Sen","doi":"10.1109/ICC47138.2019.9123219","DOIUrl":null,"url":null,"abstract":"An important part of system modeling is determining parameter values, particularly for biomolecular systems, where direct measurements of individual parameters are typically hard. While Extended Kalman Filters have been used for this purpose, the choice of the process noise covariance is generally unclear. Here, we address this issue for biomolecular systems using a combination of Monte Carlo simulations and experimental data, exploiting the dependence of the process noise covariance on the states and parameters, as given in the Langevin framework. We adapt a Hybrid Extended Kalman Filtering technique by updating the process noise covariance at each time step based on estimates. We compare the performance of this framework with different fixed values of process noise covariance in biomolecular system models, including an oscillator model, as well as in experimentally measured data for a negative transcriptional feedback circuit. We find that the parameter estimation with such process noise covariance can achieve balance between the mean square estimation error and parameter convergence time and we discuss the optimality of the filter. These results may help in the use of Extended Kalman Filters for systems where process noise covariance depends on states and/or parameters.","PeriodicalId":231050,"journal":{"name":"2019 Sixth Indian Control Conference (ICC)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Kalman Filter Approach for Biomolecular Systems with Noise Covariance Updating\",\"authors\":\"Abhishek Dey, Kushal Chakrabarti, K. Gola, Shaunak Sen\",\"doi\":\"10.1109/ICC47138.2019.9123219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important part of system modeling is determining parameter values, particularly for biomolecular systems, where direct measurements of individual parameters are typically hard. While Extended Kalman Filters have been used for this purpose, the choice of the process noise covariance is generally unclear. Here, we address this issue for biomolecular systems using a combination of Monte Carlo simulations and experimental data, exploiting the dependence of the process noise covariance on the states and parameters, as given in the Langevin framework. We adapt a Hybrid Extended Kalman Filtering technique by updating the process noise covariance at each time step based on estimates. We compare the performance of this framework with different fixed values of process noise covariance in biomolecular system models, including an oscillator model, as well as in experimentally measured data for a negative transcriptional feedback circuit. We find that the parameter estimation with such process noise covariance can achieve balance between the mean square estimation error and parameter convergence time and we discuss the optimality of the filter. These results may help in the use of Extended Kalman Filters for systems where process noise covariance depends on states and/or parameters.\",\"PeriodicalId\":231050,\"journal\":{\"name\":\"2019 Sixth Indian Control Conference (ICC)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Sixth Indian Control Conference (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC47138.2019.9123219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Sixth Indian Control Conference (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC47138.2019.9123219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

系统建模的一个重要部分是确定参数值,特别是对于生物分子系统,其中单个参数的直接测量通常是困难的。虽然扩展卡尔曼滤波器已被用于此目的,但过程噪声协方差的选择通常不明确。在这里,我们使用蒙特卡罗模拟和实验数据的组合来解决生物分子系统的这个问题,利用过程噪声协方差对状态和参数的依赖,如朗格万框架中给出的。我们采用了一种混合扩展卡尔曼滤波技术,在估计的基础上更新每个时间步的过程噪声协方差。我们将该框架的性能与生物分子系统模型(包括振荡器模型)中不同固定值的过程噪声协方差进行比较,并在负转录反馈电路的实验测量数据中进行比较。结果表明,采用这种过程噪声协方差进行参数估计可以达到均方估计误差和参数收敛时间的平衡,并讨论了滤波器的最优性。这些结果可能有助于在过程噪声协方差依赖于状态和/或参数的系统中使用扩展卡尔曼滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Kalman Filter Approach for Biomolecular Systems with Noise Covariance Updating
An important part of system modeling is determining parameter values, particularly for biomolecular systems, where direct measurements of individual parameters are typically hard. While Extended Kalman Filters have been used for this purpose, the choice of the process noise covariance is generally unclear. Here, we address this issue for biomolecular systems using a combination of Monte Carlo simulations and experimental data, exploiting the dependence of the process noise covariance on the states and parameters, as given in the Langevin framework. We adapt a Hybrid Extended Kalman Filtering technique by updating the process noise covariance at each time step based on estimates. We compare the performance of this framework with different fixed values of process noise covariance in biomolecular system models, including an oscillator model, as well as in experimentally measured data for a negative transcriptional feedback circuit. We find that the parameter estimation with such process noise covariance can achieve balance between the mean square estimation error and parameter convergence time and we discuss the optimality of the filter. These results may help in the use of Extended Kalman Filters for systems where process noise covariance depends on states and/or parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信