基于少量镜头识别技术的实时人脸识别研究

Paramveer Singh, S. Srivastava, A. Rai, A. Cheema
{"title":"基于少量镜头识别技术的实时人脸识别研究","authors":"Paramveer Singh, S. Srivastava, A. Rai, A. Cheema","doi":"10.1109/IC3I44769.2018.9007247","DOIUrl":null,"url":null,"abstract":"This paper aims at studying the problem of face recognition using very few examples. Face recognition is a tough problem yet is important for several practical applications. Contemporary techniques require thousands of samples to recognize them effectively. However, constructing such a dataset is not always feasible for practical applications. Therefore, we analyze the effectiveness of such techniques with few shot learning paradigms on benchmark datasets with standard evaluation metrics.","PeriodicalId":161694,"journal":{"name":"2018 3rd International Conference on Contemporary Computing and Informatics (IC3I)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of real time face recognition using few shot recognition techniques\",\"authors\":\"Paramveer Singh, S. Srivastava, A. Rai, A. Cheema\",\"doi\":\"10.1109/IC3I44769.2018.9007247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims at studying the problem of face recognition using very few examples. Face recognition is a tough problem yet is important for several practical applications. Contemporary techniques require thousands of samples to recognize them effectively. However, constructing such a dataset is not always feasible for practical applications. Therefore, we analyze the effectiveness of such techniques with few shot learning paradigms on benchmark datasets with standard evaluation metrics.\",\"PeriodicalId\":161694,\"journal\":{\"name\":\"2018 3rd International Conference on Contemporary Computing and Informatics (IC3I)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 3rd International Conference on Contemporary Computing and Informatics (IC3I)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3I44769.2018.9007247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on Contemporary Computing and Informatics (IC3I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3I44769.2018.9007247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在用很少的例子来研究人脸识别问题。人脸识别是一个棘手的问题,但在许多实际应用中都很重要。现代技术需要成千上万的样本才能有效地识别它们。然而,构建这样的数据集在实际应用中并不总是可行的。因此,我们在具有标准评估指标的基准数据集上分析了这些技术在较少的镜头学习范式下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of real time face recognition using few shot recognition techniques
This paper aims at studying the problem of face recognition using very few examples. Face recognition is a tough problem yet is important for several practical applications. Contemporary techniques require thousands of samples to recognize them effectively. However, constructing such a dataset is not always feasible for practical applications. Therefore, we analyze the effectiveness of such techniques with few shot learning paradigms on benchmark datasets with standard evaluation metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信