GWAS中的云上位计算模型

Zhengkui Wang, Yue Wang, K. Tan, L. Wong, D. Agrawal
{"title":"GWAS中的云上位计算模型","authors":"Zhengkui Wang, Yue Wang, K. Tan, L. Wong, D. Agrawal","doi":"10.1109/BIBM.2010.5706542","DOIUrl":null,"url":null,"abstract":"The 1000 Genome project has made available a large number of single nucleotide polymorphisms (SNPs) for genome-wide association studies (GWAS). However, the large number of SNPs has also rendered the discovery of epistatic interactions of SNPs computationally expensive. Parallelizing the computation offers a promising solution. In this paper, we propose a cloud-based epistasis computing (CEO) model that examines all k-locus SNPs combinations to find statistically significant epistatic interactions efficiently. Our CEO model uses the MapReduce framework which can be executed both on user's own clusters or on a cloud environment. Our cloud-based solution offers elastic computing resources to users, and more importantly, makes our approach affordable and available to all end-users. We evaluate our CEO model on a cluster of more than 40 nodes. Our experiment results show that our CEO model is computationally flexible, scalable and practical.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"CEO a cloud epistasis computing model in GWAS\",\"authors\":\"Zhengkui Wang, Yue Wang, K. Tan, L. Wong, D. Agrawal\",\"doi\":\"10.1109/BIBM.2010.5706542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 1000 Genome project has made available a large number of single nucleotide polymorphisms (SNPs) for genome-wide association studies (GWAS). However, the large number of SNPs has also rendered the discovery of epistatic interactions of SNPs computationally expensive. Parallelizing the computation offers a promising solution. In this paper, we propose a cloud-based epistasis computing (CEO) model that examines all k-locus SNPs combinations to find statistically significant epistatic interactions efficiently. Our CEO model uses the MapReduce framework which can be executed both on user's own clusters or on a cloud environment. Our cloud-based solution offers elastic computing resources to users, and more importantly, makes our approach affordable and available to all end-users. We evaluate our CEO model on a cluster of more than 40 nodes. Our experiment results show that our CEO model is computationally flexible, scalable and practical.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

千人基因组计划为全基因组关联研究(GWAS)提供了大量的单核苷酸多态性(snp)。然而,大量的snp也使得发现snp的上位相互作用的计算成本很高。并行计算提供了一个很有前途的解决方案。在本文中,我们提出了一个基于云的上位计算(CEO)模型,该模型检查所有k位点snp组合,以有效地找到统计上显着的上位相互作用。我们的CEO模型使用MapReduce框架,既可以在用户自己的集群上执行,也可以在云环境中执行。我们基于云的解决方案为用户提供了弹性计算资源,更重要的是,使我们的方法对所有最终用户都负担得起并可用。我们在一个超过40个节点的集群上评估我们的CEO模型。实验结果表明,该模型具有计算灵活性、可扩展性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CEO a cloud epistasis computing model in GWAS
The 1000 Genome project has made available a large number of single nucleotide polymorphisms (SNPs) for genome-wide association studies (GWAS). However, the large number of SNPs has also rendered the discovery of epistatic interactions of SNPs computationally expensive. Parallelizing the computation offers a promising solution. In this paper, we propose a cloud-based epistasis computing (CEO) model that examines all k-locus SNPs combinations to find statistically significant epistatic interactions efficiently. Our CEO model uses the MapReduce framework which can be executed both on user's own clusters or on a cloud environment. Our cloud-based solution offers elastic computing resources to users, and more importantly, makes our approach affordable and available to all end-users. We evaluate our CEO model on a cluster of more than 40 nodes. Our experiment results show that our CEO model is computationally flexible, scalable and practical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信