Zhengkui Wang, Yue Wang, K. Tan, L. Wong, D. Agrawal
{"title":"GWAS中的云上位计算模型","authors":"Zhengkui Wang, Yue Wang, K. Tan, L. Wong, D. Agrawal","doi":"10.1109/BIBM.2010.5706542","DOIUrl":null,"url":null,"abstract":"The 1000 Genome project has made available a large number of single nucleotide polymorphisms (SNPs) for genome-wide association studies (GWAS). However, the large number of SNPs has also rendered the discovery of epistatic interactions of SNPs computationally expensive. Parallelizing the computation offers a promising solution. In this paper, we propose a cloud-based epistasis computing (CEO) model that examines all k-locus SNPs combinations to find statistically significant epistatic interactions efficiently. Our CEO model uses the MapReduce framework which can be executed both on user's own clusters or on a cloud environment. Our cloud-based solution offers elastic computing resources to users, and more importantly, makes our approach affordable and available to all end-users. We evaluate our CEO model on a cluster of more than 40 nodes. Our experiment results show that our CEO model is computationally flexible, scalable and practical.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"CEO a cloud epistasis computing model in GWAS\",\"authors\":\"Zhengkui Wang, Yue Wang, K. Tan, L. Wong, D. Agrawal\",\"doi\":\"10.1109/BIBM.2010.5706542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 1000 Genome project has made available a large number of single nucleotide polymorphisms (SNPs) for genome-wide association studies (GWAS). However, the large number of SNPs has also rendered the discovery of epistatic interactions of SNPs computationally expensive. Parallelizing the computation offers a promising solution. In this paper, we propose a cloud-based epistasis computing (CEO) model that examines all k-locus SNPs combinations to find statistically significant epistatic interactions efficiently. Our CEO model uses the MapReduce framework which can be executed both on user's own clusters or on a cloud environment. Our cloud-based solution offers elastic computing resources to users, and more importantly, makes our approach affordable and available to all end-users. We evaluate our CEO model on a cluster of more than 40 nodes. Our experiment results show that our CEO model is computationally flexible, scalable and practical.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The 1000 Genome project has made available a large number of single nucleotide polymorphisms (SNPs) for genome-wide association studies (GWAS). However, the large number of SNPs has also rendered the discovery of epistatic interactions of SNPs computationally expensive. Parallelizing the computation offers a promising solution. In this paper, we propose a cloud-based epistasis computing (CEO) model that examines all k-locus SNPs combinations to find statistically significant epistatic interactions efficiently. Our CEO model uses the MapReduce framework which can be executed both on user's own clusters or on a cloud environment. Our cloud-based solution offers elastic computing resources to users, and more importantly, makes our approach affordable and available to all end-users. We evaluate our CEO model on a cluster of more than 40 nodes. Our experiment results show that our CEO model is computationally flexible, scalable and practical.