{"title":"视觉感知群提取的标记点过程模型","authors":"A. Mbarki, M. Naouai","doi":"10.1109/VCIP49819.2020.9301776","DOIUrl":null,"url":null,"abstract":"Perceptual organization is the process of assigning each part of a scene to a specified association of features to be a part of the same organization. In the twenty century, Gestalt psychologists formalized how image features tend to be grouped by giving a set of organizing principles. In this paper, we propose an approach for the detection of perceptual groups in an image. We are mainly interested in features grouped by the proximity law of Gestalt. We conceive an object-based model within a stochastic framework using a marked point process (MPP). We use a Bayesian learning method to extract perceptual groups in a scene. The proposed model tested on synthetic images proves the efficient detection of perceptual groups in noisy images.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Marked Point Process Model For Visual Perceptual Groups Extraction\",\"authors\":\"A. Mbarki, M. Naouai\",\"doi\":\"10.1109/VCIP49819.2020.9301776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perceptual organization is the process of assigning each part of a scene to a specified association of features to be a part of the same organization. In the twenty century, Gestalt psychologists formalized how image features tend to be grouped by giving a set of organizing principles. In this paper, we propose an approach for the detection of perceptual groups in an image. We are mainly interested in features grouped by the proximity law of Gestalt. We conceive an object-based model within a stochastic framework using a marked point process (MPP). We use a Bayesian learning method to extract perceptual groups in a scene. The proposed model tested on synthetic images proves the efficient detection of perceptual groups in noisy images.\",\"PeriodicalId\":431880,\"journal\":{\"name\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"155 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP49819.2020.9301776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Marked Point Process Model For Visual Perceptual Groups Extraction
Perceptual organization is the process of assigning each part of a scene to a specified association of features to be a part of the same organization. In the twenty century, Gestalt psychologists formalized how image features tend to be grouped by giving a set of organizing principles. In this paper, we propose an approach for the detection of perceptual groups in an image. We are mainly interested in features grouped by the proximity law of Gestalt. We conceive an object-based model within a stochastic framework using a marked point process (MPP). We use a Bayesian learning method to extract perceptual groups in a scene. The proposed model tested on synthetic images proves the efficient detection of perceptual groups in noisy images.