智慧城市空气质量监测数据分析中基于贝叶斯优化的集成回归模型超参数整定

Saptarshi Das, Ahmed Alzimami
{"title":"智慧城市空气质量监测数据分析中基于贝叶斯优化的集成回归模型超参数整定","authors":"Saptarshi Das, Ahmed Alzimami","doi":"10.1109/ICAISC56366.2023.10085504","DOIUrl":null,"url":null,"abstract":"This paper uses the Bayesian optimization for fitting Ensemble regression models for tuning the machine learning model hyperparameters with reduced computation. We use the Pune Smart City air quality monitoring dataset with temporal variation of hazardous chemical pollutants in the air. The aim here is to reliably predict the suspended particulates as the air quality metrics using other environmental variables, considering linear models and nonlinear ensemble of tree models. To achieve good predictive accuracy a computationally expensive optimization method is required which has been achieved using the Gaussian Process surrogate assisted Bayesian optimization. We also show the diagnostics plots of the residuals from the nonlinear models to explain model quality.","PeriodicalId":422888,"journal":{"name":"2023 1st International Conference on Advanced Innovations in Smart Cities (ICAISC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bayesian Optimization based Hyperparameter Tuning of Ensemble Regression Models in Smart City Air Quality Monitoring Data Analytics\",\"authors\":\"Saptarshi Das, Ahmed Alzimami\",\"doi\":\"10.1109/ICAISC56366.2023.10085504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper uses the Bayesian optimization for fitting Ensemble regression models for tuning the machine learning model hyperparameters with reduced computation. We use the Pune Smart City air quality monitoring dataset with temporal variation of hazardous chemical pollutants in the air. The aim here is to reliably predict the suspended particulates as the air quality metrics using other environmental variables, considering linear models and nonlinear ensemble of tree models. To achieve good predictive accuracy a computationally expensive optimization method is required which has been achieved using the Gaussian Process surrogate assisted Bayesian optimization. We also show the diagnostics plots of the residuals from the nonlinear models to explain model quality.\",\"PeriodicalId\":422888,\"journal\":{\"name\":\"2023 1st International Conference on Advanced Innovations in Smart Cities (ICAISC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 1st International Conference on Advanced Innovations in Smart Cities (ICAISC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAISC56366.2023.10085504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 1st International Conference on Advanced Innovations in Smart Cities (ICAISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAISC56366.2023.10085504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文使用贝叶斯优化方法拟合集成回归模型,以减少计算量来调整机器学习模型的超参数。我们使用浦那智能城市空气质量监测数据集,其中包含空气中有害化学污染物的时间变化。本文的目的是利用其他环境变量,考虑线性模型和树模型的非线性集合,可靠地预测悬浮颗粒作为空气质量指标。为了达到良好的预测精度,需要一种计算代价昂贵的优化方法,这种方法已经用高斯过程代理辅助贝叶斯优化实现了。我们还展示了非线性模型残差的诊断图,以解释模型质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Optimization based Hyperparameter Tuning of Ensemble Regression Models in Smart City Air Quality Monitoring Data Analytics
This paper uses the Bayesian optimization for fitting Ensemble regression models for tuning the machine learning model hyperparameters with reduced computation. We use the Pune Smart City air quality monitoring dataset with temporal variation of hazardous chemical pollutants in the air. The aim here is to reliably predict the suspended particulates as the air quality metrics using other environmental variables, considering linear models and nonlinear ensemble of tree models. To achieve good predictive accuracy a computationally expensive optimization method is required which has been achieved using the Gaussian Process surrogate assisted Bayesian optimization. We also show the diagnostics plots of the residuals from the nonlinear models to explain model quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信