{"title":"智慧城市空气质量监测数据分析中基于贝叶斯优化的集成回归模型超参数整定","authors":"Saptarshi Das, Ahmed Alzimami","doi":"10.1109/ICAISC56366.2023.10085504","DOIUrl":null,"url":null,"abstract":"This paper uses the Bayesian optimization for fitting Ensemble regression models for tuning the machine learning model hyperparameters with reduced computation. We use the Pune Smart City air quality monitoring dataset with temporal variation of hazardous chemical pollutants in the air. The aim here is to reliably predict the suspended particulates as the air quality metrics using other environmental variables, considering linear models and nonlinear ensemble of tree models. To achieve good predictive accuracy a computationally expensive optimization method is required which has been achieved using the Gaussian Process surrogate assisted Bayesian optimization. We also show the diagnostics plots of the residuals from the nonlinear models to explain model quality.","PeriodicalId":422888,"journal":{"name":"2023 1st International Conference on Advanced Innovations in Smart Cities (ICAISC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bayesian Optimization based Hyperparameter Tuning of Ensemble Regression Models in Smart City Air Quality Monitoring Data Analytics\",\"authors\":\"Saptarshi Das, Ahmed Alzimami\",\"doi\":\"10.1109/ICAISC56366.2023.10085504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper uses the Bayesian optimization for fitting Ensemble regression models for tuning the machine learning model hyperparameters with reduced computation. We use the Pune Smart City air quality monitoring dataset with temporal variation of hazardous chemical pollutants in the air. The aim here is to reliably predict the suspended particulates as the air quality metrics using other environmental variables, considering linear models and nonlinear ensemble of tree models. To achieve good predictive accuracy a computationally expensive optimization method is required which has been achieved using the Gaussian Process surrogate assisted Bayesian optimization. We also show the diagnostics plots of the residuals from the nonlinear models to explain model quality.\",\"PeriodicalId\":422888,\"journal\":{\"name\":\"2023 1st International Conference on Advanced Innovations in Smart Cities (ICAISC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 1st International Conference on Advanced Innovations in Smart Cities (ICAISC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAISC56366.2023.10085504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 1st International Conference on Advanced Innovations in Smart Cities (ICAISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAISC56366.2023.10085504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bayesian Optimization based Hyperparameter Tuning of Ensemble Regression Models in Smart City Air Quality Monitoring Data Analytics
This paper uses the Bayesian optimization for fitting Ensemble regression models for tuning the machine learning model hyperparameters with reduced computation. We use the Pune Smart City air quality monitoring dataset with temporal variation of hazardous chemical pollutants in the air. The aim here is to reliably predict the suspended particulates as the air quality metrics using other environmental variables, considering linear models and nonlinear ensemble of tree models. To achieve good predictive accuracy a computationally expensive optimization method is required which has been achieved using the Gaussian Process surrogate assisted Bayesian optimization. We also show the diagnostics plots of the residuals from the nonlinear models to explain model quality.