在线新模糊神经元状态观测器

R. P. Landim, B. R. Menezes, S. Silva, W. Caminhas
{"title":"在线新模糊神经元状态观测器","authors":"R. P. Landim, B. R. Menezes, S. Silva, W. Caminhas","doi":"10.1109/SBRN.2000.889738","DOIUrl":null,"url":null,"abstract":"An algorithm for a state observation based on a neo-fuzzy-neuron (NFN) with real time training is presented. Some useful theorems are promptly demonstrated and used to aid the design of the observer. Two applications of this state observer are shown: an induction machine rotor flux observer and an induction machine speed observer. Digital simulation and experimental results show the good performance of the observer.","PeriodicalId":448461,"journal":{"name":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Online neo-fuzzy-neuron state observer\",\"authors\":\"R. P. Landim, B. R. Menezes, S. Silva, W. Caminhas\",\"doi\":\"10.1109/SBRN.2000.889738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm for a state observation based on a neo-fuzzy-neuron (NFN) with real time training is presented. Some useful theorems are promptly demonstrated and used to aid the design of the observer. Two applications of this state observer are shown: an induction machine rotor flux observer and an induction machine speed observer. Digital simulation and experimental results show the good performance of the observer.\",\"PeriodicalId\":448461,\"journal\":{\"name\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2000.889738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2000.889738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种基于实时训练的新模糊神经元(NFN)状态观测算法。一些有用的定理被迅速证明并用于帮助设计观察者。给出了该状态观测器的两种应用:感应电机转子磁链观测器和感应电机转速观测器。数字仿真和实验结果表明,该观测器具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online neo-fuzzy-neuron state observer
An algorithm for a state observation based on a neo-fuzzy-neuron (NFN) with real time training is presented. Some useful theorems are promptly demonstrated and used to aid the design of the observer. Two applications of this state observer are shown: an induction machine rotor flux observer and an induction machine speed observer. Digital simulation and experimental results show the good performance of the observer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信