离散时间线性不确定系统的小保守稳定性判据

K. Gu, W. Chai, N. Loh
{"title":"离散时间线性不确定系统的小保守稳定性判据","authors":"K. Gu, W. Chai, N. Loh","doi":"10.23919/ACC.1990.4790922","DOIUrl":null,"url":null,"abstract":"The stability problem of discrete-time linear uncertain systems is considered. The uncertainty is expressed in terms of uncertain system matrix, and is allowed to be arbitrary time varying. The criterion is based on quadratic stability. The necessary and sufficient condition of the quadratic stability is formulated in a two level optimization problem. The higher level of this optimization is proved to be convex. When the uncertainty bounding set is a hyperpolyhedron, the lower level can be reached by one of the finite number of vertices. An illustrative example is presented to show the advantage of the proposed criterion.","PeriodicalId":307181,"journal":{"name":"1990 American Control Conference","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards Less Conservative Stability Criterion for Discrete-Time Linear Uncertain Systems\",\"authors\":\"K. Gu, W. Chai, N. Loh\",\"doi\":\"10.23919/ACC.1990.4790922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stability problem of discrete-time linear uncertain systems is considered. The uncertainty is expressed in terms of uncertain system matrix, and is allowed to be arbitrary time varying. The criterion is based on quadratic stability. The necessary and sufficient condition of the quadratic stability is formulated in a two level optimization problem. The higher level of this optimization is proved to be convex. When the uncertainty bounding set is a hyperpolyhedron, the lower level can be reached by one of the finite number of vertices. An illustrative example is presented to show the advantage of the proposed criterion.\",\"PeriodicalId\":307181,\"journal\":{\"name\":\"1990 American Control Conference\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1990 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.1990.4790922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1990 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.1990.4790922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究离散时间线性不确定系统的稳定性问题。不确定性用不确定系统矩阵表示,允许任意时变。该判据基于二次稳定性。在一个两级优化问题中,给出了二次稳定性的充分必要条件。证明了该优化的上一级是凸的。当不确定性边界集是一个超多面体时,较低的层次可以由有限个顶点中的一个到达。最后通过一个实例说明了该准则的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Less Conservative Stability Criterion for Discrete-Time Linear Uncertain Systems
The stability problem of discrete-time linear uncertain systems is considered. The uncertainty is expressed in terms of uncertain system matrix, and is allowed to be arbitrary time varying. The criterion is based on quadratic stability. The necessary and sufficient condition of the quadratic stability is formulated in a two level optimization problem. The higher level of this optimization is proved to be convex. When the uncertainty bounding set is a hyperpolyhedron, the lower level can be reached by one of the finite number of vertices. An illustrative example is presented to show the advantage of the proposed criterion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信