基于心电信号二维尺度图特征的量子卷积神经网络识别心律失常

S. S, K. T, Issac K, Sudha M
{"title":"基于心电信号二维尺度图特征的量子卷积神经网络识别心律失常","authors":"S. S, K. T, Issac K, Sudha M","doi":"10.1109/ICITIIT54346.2022.9744224","DOIUrl":null,"url":null,"abstract":"Quantum computing is the main emerging technology solving complex problems and even though error raised will be high, can be computed using customized algorithms. We propose the use of discrete wavelet transform to decompose the ECG signals followed by computing 2D scalogram to obtain time-frequency features and apply Quanvolutional Neural Network to classify those scalogram images to recognize Arrhythmia. This is the first paper to introduce scalogram and Quanvolutional neural networks. We considered using publicly available physio net MIT-BIH arrhythmia database for our research. The proposed model of hybrid quantum classical model comprising quantum convolutional neural networks for the MIT-BIH arrhythmia database resulting in the precision of 98% and Receiver Operating Curve Score of 100%.","PeriodicalId":184353,"journal":{"name":"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Quanvolution Neural Network to Recognize arrhythmia from 2D scaleogram features of ECG signals\",\"authors\":\"S. S, K. T, Issac K, Sudha M\",\"doi\":\"10.1109/ICITIIT54346.2022.9744224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum computing is the main emerging technology solving complex problems and even though error raised will be high, can be computed using customized algorithms. We propose the use of discrete wavelet transform to decompose the ECG signals followed by computing 2D scalogram to obtain time-frequency features and apply Quanvolutional Neural Network to classify those scalogram images to recognize Arrhythmia. This is the first paper to introduce scalogram and Quanvolutional neural networks. We considered using publicly available physio net MIT-BIH arrhythmia database for our research. The proposed model of hybrid quantum classical model comprising quantum convolutional neural networks for the MIT-BIH arrhythmia database resulting in the precision of 98% and Receiver Operating Curve Score of 100%.\",\"PeriodicalId\":184353,\"journal\":{\"name\":\"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITIIT54346.2022.9744224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITIIT54346.2022.9744224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

量子计算是解决复杂问题的主要新兴技术,即使产生的误差很高,也可以使用定制算法进行计算。本文提出利用离散小波变换对心电信号进行分解,计算二维尺度图得到时频特征,并应用量子神经网络对尺度图图像进行分类,实现心律失常的识别。本文首次介绍了尺度图和量子神经网络。我们考虑在我们的研究中使用公开的physio net MIT-BIH心律失常数据库。本文提出的由量子卷积神经网络组成的混合量子经典模型用于MIT-BIH心律失常数据库,其准确率为98%,接收者工作曲线评分为100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quanvolution Neural Network to Recognize arrhythmia from 2D scaleogram features of ECG signals
Quantum computing is the main emerging technology solving complex problems and even though error raised will be high, can be computed using customized algorithms. We propose the use of discrete wavelet transform to decompose the ECG signals followed by computing 2D scalogram to obtain time-frequency features and apply Quanvolutional Neural Network to classify those scalogram images to recognize Arrhythmia. This is the first paper to introduce scalogram and Quanvolutional neural networks. We considered using publicly available physio net MIT-BIH arrhythmia database for our research. The proposed model of hybrid quantum classical model comprising quantum convolutional neural networks for the MIT-BIH arrhythmia database resulting in the precision of 98% and Receiver Operating Curve Score of 100%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信