现有子输电网中虚拟电厂辅助服务的量化

N. Etherden, M. Bollen, Johanna Lundkvist
{"title":"现有子输电网中虚拟电厂辅助服务的量化","authors":"N. Etherden, M. Bollen, Johanna Lundkvist","doi":"10.1109/ISGTEurope.2013.6695294","DOIUrl":null,"url":null,"abstract":"This paper presents the results of a feasibility study of a virtual power plant (VPP) in central Sweden designed to provide ancillary services to a 50-kV distribution network. The VPP consists of a wind park, hydro plant and reservoir as well as solar PVs and battery energy storage. The 50-kV subtransmission network was modeled in order to evaluate the ancillary services that could be provided by coordinating existing distributed energy resources in the network. Simulations were performed using measured hourly variations in production and consumption at all network nodes. The studied ancillary services include both reactive and active power control. Contribution from the VPP is evaluated for balancing, to enable a producer to meet spot markets bids and avoid purchases of balancing power minimize peak load in order to reduce subscribed power and tariff to the regional 130-kV network decrease network losses the contribution from reactive power control using the power converters to reduce the reactive power flow to the overlying network. Quantification of the economic gains from each operation case is provided.","PeriodicalId":307118,"journal":{"name":"IEEE PES ISGT Europe 2013","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Quantification of ancillary services from a virtual power plant in an existing subtransmision network\",\"authors\":\"N. Etherden, M. Bollen, Johanna Lundkvist\",\"doi\":\"10.1109/ISGTEurope.2013.6695294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the results of a feasibility study of a virtual power plant (VPP) in central Sweden designed to provide ancillary services to a 50-kV distribution network. The VPP consists of a wind park, hydro plant and reservoir as well as solar PVs and battery energy storage. The 50-kV subtransmission network was modeled in order to evaluate the ancillary services that could be provided by coordinating existing distributed energy resources in the network. Simulations were performed using measured hourly variations in production and consumption at all network nodes. The studied ancillary services include both reactive and active power control. Contribution from the VPP is evaluated for balancing, to enable a producer to meet spot markets bids and avoid purchases of balancing power minimize peak load in order to reduce subscribed power and tariff to the regional 130-kV network decrease network losses the contribution from reactive power control using the power converters to reduce the reactive power flow to the overlying network. Quantification of the economic gains from each operation case is provided.\",\"PeriodicalId\":307118,\"journal\":{\"name\":\"IEEE PES ISGT Europe 2013\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE PES ISGT Europe 2013\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEurope.2013.6695294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE PES ISGT Europe 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2013.6695294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文介绍了瑞典中部一个虚拟电厂(VPP)的可行性研究结果,该电厂旨在为50千伏配电网络提供辅助服务。VPP由风电场、水力发电厂和水库以及太阳能光伏和电池储能系统组成。以50kv输电网络为例,通过对电网中现有分布式能源的协调,对其辅助服务进行了建模。通过测量所有网络节点每小时的生产和消费变化来进行模拟。所研究的辅助服务包括无功控制和有功控制。VPP的贡献被评估为平衡,使生产商能够满足现货市场投标,避免购买平衡电力,最大限度地减少峰值负荷,以减少向区域130千伏网络订购的电力和电价,减少网络损失,无功控制的贡献使用功率转换器减少向覆盖网络的无功功率流。并对各操作案例的经济效益进行了量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantification of ancillary services from a virtual power plant in an existing subtransmision network
This paper presents the results of a feasibility study of a virtual power plant (VPP) in central Sweden designed to provide ancillary services to a 50-kV distribution network. The VPP consists of a wind park, hydro plant and reservoir as well as solar PVs and battery energy storage. The 50-kV subtransmission network was modeled in order to evaluate the ancillary services that could be provided by coordinating existing distributed energy resources in the network. Simulations were performed using measured hourly variations in production and consumption at all network nodes. The studied ancillary services include both reactive and active power control. Contribution from the VPP is evaluated for balancing, to enable a producer to meet spot markets bids and avoid purchases of balancing power minimize peak load in order to reduce subscribed power and tariff to the regional 130-kV network decrease network losses the contribution from reactive power control using the power converters to reduce the reactive power flow to the overlying network. Quantification of the economic gains from each operation case is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信