{"title":"现有子输电网中虚拟电厂辅助服务的量化","authors":"N. Etherden, M. Bollen, Johanna Lundkvist","doi":"10.1109/ISGTEurope.2013.6695294","DOIUrl":null,"url":null,"abstract":"This paper presents the results of a feasibility study of a virtual power plant (VPP) in central Sweden designed to provide ancillary services to a 50-kV distribution network. The VPP consists of a wind park, hydro plant and reservoir as well as solar PVs and battery energy storage. The 50-kV subtransmission network was modeled in order to evaluate the ancillary services that could be provided by coordinating existing distributed energy resources in the network. Simulations were performed using measured hourly variations in production and consumption at all network nodes. The studied ancillary services include both reactive and active power control. Contribution from the VPP is evaluated for balancing, to enable a producer to meet spot markets bids and avoid purchases of balancing power minimize peak load in order to reduce subscribed power and tariff to the regional 130-kV network decrease network losses the contribution from reactive power control using the power converters to reduce the reactive power flow to the overlying network. Quantification of the economic gains from each operation case is provided.","PeriodicalId":307118,"journal":{"name":"IEEE PES ISGT Europe 2013","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Quantification of ancillary services from a virtual power plant in an existing subtransmision network\",\"authors\":\"N. Etherden, M. Bollen, Johanna Lundkvist\",\"doi\":\"10.1109/ISGTEurope.2013.6695294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the results of a feasibility study of a virtual power plant (VPP) in central Sweden designed to provide ancillary services to a 50-kV distribution network. The VPP consists of a wind park, hydro plant and reservoir as well as solar PVs and battery energy storage. The 50-kV subtransmission network was modeled in order to evaluate the ancillary services that could be provided by coordinating existing distributed energy resources in the network. Simulations were performed using measured hourly variations in production and consumption at all network nodes. The studied ancillary services include both reactive and active power control. Contribution from the VPP is evaluated for balancing, to enable a producer to meet spot markets bids and avoid purchases of balancing power minimize peak load in order to reduce subscribed power and tariff to the regional 130-kV network decrease network losses the contribution from reactive power control using the power converters to reduce the reactive power flow to the overlying network. Quantification of the economic gains from each operation case is provided.\",\"PeriodicalId\":307118,\"journal\":{\"name\":\"IEEE PES ISGT Europe 2013\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE PES ISGT Europe 2013\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEurope.2013.6695294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE PES ISGT Europe 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2013.6695294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantification of ancillary services from a virtual power plant in an existing subtransmision network
This paper presents the results of a feasibility study of a virtual power plant (VPP) in central Sweden designed to provide ancillary services to a 50-kV distribution network. The VPP consists of a wind park, hydro plant and reservoir as well as solar PVs and battery energy storage. The 50-kV subtransmission network was modeled in order to evaluate the ancillary services that could be provided by coordinating existing distributed energy resources in the network. Simulations were performed using measured hourly variations in production and consumption at all network nodes. The studied ancillary services include both reactive and active power control. Contribution from the VPP is evaluated for balancing, to enable a producer to meet spot markets bids and avoid purchases of balancing power minimize peak load in order to reduce subscribed power and tariff to the regional 130-kV network decrease network losses the contribution from reactive power control using the power converters to reduce the reactive power flow to the overlying network. Quantification of the economic gains from each operation case is provided.