跳过交叉点:快速计算共享内存系统上的共同邻居

Xiaojing An, Kasimir Gabert, James Fox, Oded Green, David A. Bader
{"title":"跳过交叉点:快速计算共享内存系统上的共同邻居","authors":"Xiaojing An, Kasimir Gabert, James Fox, Oded Green, David A. Bader","doi":"10.1109/HPEC.2019.8916307","DOIUrl":null,"url":null,"abstract":"Counting common neighbors between all vertex pairs in a graph is a fundamental operation, with uses in similarity measures, link prediction, graph compression, community detection, and more. Current shared-memory approaches either rely on set intersections or are not readily parallelizable. We introduce a new efficient and parallelizable algorithm to count common neighbors: starting at a wedge endpoint, we iterate through all wedges in the graph, and increment the common neighbor count for each endpoint pair. This exactly counts the common neighbors between all pairs without using set intersections, and as such attains an asymptotic improvement in runtime. Furthermore, our algorithm is simple to implement and only slight modifications are required for existing implementations to use our results. We provide an OpenMP implementation and evaluate it on real-world and synthetic graphs, demonstrating no loss of scalability and an asymptotic improvement. We show intersections are neither necessary nor helpful for computing all pairs common neighbor counts.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Skip the Intersection: Quickly Counting Common Neighbors on Shared-Memory Systems\",\"authors\":\"Xiaojing An, Kasimir Gabert, James Fox, Oded Green, David A. Bader\",\"doi\":\"10.1109/HPEC.2019.8916307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Counting common neighbors between all vertex pairs in a graph is a fundamental operation, with uses in similarity measures, link prediction, graph compression, community detection, and more. Current shared-memory approaches either rely on set intersections or are not readily parallelizable. We introduce a new efficient and parallelizable algorithm to count common neighbors: starting at a wedge endpoint, we iterate through all wedges in the graph, and increment the common neighbor count for each endpoint pair. This exactly counts the common neighbors between all pairs without using set intersections, and as such attains an asymptotic improvement in runtime. Furthermore, our algorithm is simple to implement and only slight modifications are required for existing implementations to use our results. We provide an OpenMP implementation and evaluate it on real-world and synthetic graphs, demonstrating no loss of scalability and an asymptotic improvement. We show intersections are neither necessary nor helpful for computing all pairs common neighbor counts.\",\"PeriodicalId\":184253,\"journal\":{\"name\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2019.8916307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

计算图中所有顶点对之间的共同邻居是一项基本操作,用于相似性度量、链接预测、图压缩、社区检测等。当前的共享内存方法要么依赖于集合交叉点,要么不容易并行化。我们引入了一种新的高效且可并行化的算法来计算共同邻居:我们从一个楔形端点开始,迭代图中的所有楔形,并增加每个端点对的共同邻居计数。这在不使用集合交点的情况下准确地计算了所有对之间的共同邻域,因此在运行时获得了渐近改进。此外,我们的算法易于实现,现有的实现只需要稍加修改就可以使用我们的结果。我们提供了一个OpenMP实现,并在真实世界和合成图上对其进行了评估,证明了没有损失可伸缩性和渐近改进。我们证明交集对于计算所有对的共同邻居计数既没有必要也没有帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Skip the Intersection: Quickly Counting Common Neighbors on Shared-Memory Systems
Counting common neighbors between all vertex pairs in a graph is a fundamental operation, with uses in similarity measures, link prediction, graph compression, community detection, and more. Current shared-memory approaches either rely on set intersections or are not readily parallelizable. We introduce a new efficient and parallelizable algorithm to count common neighbors: starting at a wedge endpoint, we iterate through all wedges in the graph, and increment the common neighbor count for each endpoint pair. This exactly counts the common neighbors between all pairs without using set intersections, and as such attains an asymptotic improvement in runtime. Furthermore, our algorithm is simple to implement and only slight modifications are required for existing implementations to use our results. We provide an OpenMP implementation and evaluate it on real-world and synthetic graphs, demonstrating no loss of scalability and an asymptotic improvement. We show intersections are neither necessary nor helpful for computing all pairs common neighbor counts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信