通过学习局部跨域特征描述符匹配二维图像补丁和三维点云

Weiquan Liu, Baiqi Lai, Cheng Wang, Xuesheng Bian, Chenglu Wen, Ming Cheng, Yu Zang, Yan Xia, Jonathan Li
{"title":"通过学习局部跨域特征描述符匹配二维图像补丁和三维点云","authors":"Weiquan Liu, Baiqi Lai, Cheng Wang, Xuesheng Bian, Chenglu Wen, Ming Cheng, Yu Zang, Yan Xia, Jonathan Li","doi":"10.1109/VRW52623.2021.00140","DOIUrl":null,"url":null,"abstract":"Establishing the relationship of 2D images and 3D point clouds is a solution to establish the spatial relationship between 2D and 3D space, i.e. AR virtual-real registration. In this paper, we propose a network, 2D3D-GAN-Net, to learn the local invariant cross-domain feature descriptors of 2D image patches and 3D point cloud volumes. Then, the learned local invariant cross-domain feature descriptors are used for matching 2D images and 3D point clouds. The Generative Adversarial Networks (GAN) is embedded into the 2D3D-GANNet, which is used to distinguish the source of the learned feature descriptors, facilitating the extraction of invariant local cross-domain feature descriptors. Experiments show that the local cross-domain feature descriptors learned by 2D3D-GAN-Net are robust, and can be used for cross-dimensional retrieval on the 2D image patches and 3D point cloud volumes dataset. In addition, the learned 3D feature descriptors are used to register the point cloud for demonstrating the robustness of learned local cross-domain feature descriptors.","PeriodicalId":256204,"journal":{"name":"2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)","volume":"412 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Matching 2D Image Patches and 3D Point Cloud Volumes by Learning Local Cross-domain Feature Descriptors\",\"authors\":\"Weiquan Liu, Baiqi Lai, Cheng Wang, Xuesheng Bian, Chenglu Wen, Ming Cheng, Yu Zang, Yan Xia, Jonathan Li\",\"doi\":\"10.1109/VRW52623.2021.00140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Establishing the relationship of 2D images and 3D point clouds is a solution to establish the spatial relationship between 2D and 3D space, i.e. AR virtual-real registration. In this paper, we propose a network, 2D3D-GAN-Net, to learn the local invariant cross-domain feature descriptors of 2D image patches and 3D point cloud volumes. Then, the learned local invariant cross-domain feature descriptors are used for matching 2D images and 3D point clouds. The Generative Adversarial Networks (GAN) is embedded into the 2D3D-GANNet, which is used to distinguish the source of the learned feature descriptors, facilitating the extraction of invariant local cross-domain feature descriptors. Experiments show that the local cross-domain feature descriptors learned by 2D3D-GAN-Net are robust, and can be used for cross-dimensional retrieval on the 2D image patches and 3D point cloud volumes dataset. In addition, the learned 3D feature descriptors are used to register the point cloud for demonstrating the robustness of learned local cross-domain feature descriptors.\",\"PeriodicalId\":256204,\"journal\":{\"name\":\"2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)\",\"volume\":\"412 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VRW52623.2021.00140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VRW52623.2021.00140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

建立二维图像与三维点云的关系,是建立二维与三维空间之间的空间关系,即AR虚实配准的一种解决方案。在本文中,我们提出了一个网络2D3D-GAN-Net来学习二维图像斑块和三维点云体的局部不变性跨域特征描述子。然后,将学习到的局部不变跨域特征描述子用于二维图像和三维点云的匹配。生成对抗网络(GAN)嵌入到2D3D-GANNet中,用于区分学习到的特征描述符的来源,便于提取不变的局部跨域特征描述符。实验表明,该方法学习到的局部跨域特征描述符具有鲁棒性,可用于二维图像斑块和三维点云体数据集的跨维检索。此外,将学习到的三维特征描述符用于配准点云,以证明学习到的局部跨域特征描述符的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matching 2D Image Patches and 3D Point Cloud Volumes by Learning Local Cross-domain Feature Descriptors
Establishing the relationship of 2D images and 3D point clouds is a solution to establish the spatial relationship between 2D and 3D space, i.e. AR virtual-real registration. In this paper, we propose a network, 2D3D-GAN-Net, to learn the local invariant cross-domain feature descriptors of 2D image patches and 3D point cloud volumes. Then, the learned local invariant cross-domain feature descriptors are used for matching 2D images and 3D point clouds. The Generative Adversarial Networks (GAN) is embedded into the 2D3D-GANNet, which is used to distinguish the source of the learned feature descriptors, facilitating the extraction of invariant local cross-domain feature descriptors. Experiments show that the local cross-domain feature descriptors learned by 2D3D-GAN-Net are robust, and can be used for cross-dimensional retrieval on the 2D image patches and 3D point cloud volumes dataset. In addition, the learned 3D feature descriptors are used to register the point cloud for demonstrating the robustness of learned local cross-domain feature descriptors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信