增材制造的聚合物复合热交换器中增强的空气侧传热

David M. Hymas, Martinus A. Arle, Farah Singer, A. Shooshtari, M. Ohadi
{"title":"增材制造的聚合物复合热交换器中增强的空气侧传热","authors":"David M. Hymas, Martinus A. Arle, Farah Singer, A. Shooshtari, M. Ohadi","doi":"10.1109/ITHERM.2017.7992546","DOIUrl":null,"url":null,"abstract":"The present study builds upon our prior work in integrating additive manufacturing into next-generation heat/mass exchanger devices. In this paper, we will report an analysis of the fabrication, testing, and performance of an additively manufactured polymer composite heat exchanger. This heat exchanger utilizes a novel approach to achieve enhanced air-side heat transfer coefficients and overall mass reduction. This device relies on the Cross-Media Fiber concept where two fluid flows are thermally linked by high-conductivity fins, passing through a low-conductivity channel wall. Through this, the authors have met the required pressure containment, coefficient of performance, and heat flow rate targets, which were 28 psig, 100 and 150 W respectively. The advances that are discussed throughout this paper have allowed this novel polymer composite heat exchanger to be produced through a newly developed form of additive manufacturing that can potentially lead to the economical production of large scale Cross-Media Fiber heat exchangers.","PeriodicalId":387542,"journal":{"name":"2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Enhanced air-side heat transfer in an additively manufactured polymer composite heat exchanger\",\"authors\":\"David M. Hymas, Martinus A. Arle, Farah Singer, A. Shooshtari, M. Ohadi\",\"doi\":\"10.1109/ITHERM.2017.7992546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study builds upon our prior work in integrating additive manufacturing into next-generation heat/mass exchanger devices. In this paper, we will report an analysis of the fabrication, testing, and performance of an additively manufactured polymer composite heat exchanger. This heat exchanger utilizes a novel approach to achieve enhanced air-side heat transfer coefficients and overall mass reduction. This device relies on the Cross-Media Fiber concept where two fluid flows are thermally linked by high-conductivity fins, passing through a low-conductivity channel wall. Through this, the authors have met the required pressure containment, coefficient of performance, and heat flow rate targets, which were 28 psig, 100 and 150 W respectively. The advances that are discussed throughout this paper have allowed this novel polymer composite heat exchanger to be produced through a newly developed form of additive manufacturing that can potentially lead to the economical production of large scale Cross-Media Fiber heat exchangers.\",\"PeriodicalId\":387542,\"journal\":{\"name\":\"2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITHERM.2017.7992546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2017.7992546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

目前的研究建立在我们之前将增材制造集成到下一代热/质交换器设备中的工作基础上。在本文中,我们将报告一种增材制造聚合物复合热交换器的制造、测试和性能分析。这种热交换器采用了一种新颖的方法来实现增强的空气侧传热系数和整体质量减少。该装置依赖于跨介质光纤的概念,其中两种流体通过高导电性的鳍片热连接,通过低导电性的通道壁。通过这种方法,作者满足了所需的压力控制、性能系数和热流率目标,分别为28 psig、100和150 W。本文讨论的进展使得这种新型聚合物复合热交换器可以通过一种新开发的增材制造形式生产,这可能会导致大规模跨介质光纤热交换器的经济生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced air-side heat transfer in an additively manufactured polymer composite heat exchanger
The present study builds upon our prior work in integrating additive manufacturing into next-generation heat/mass exchanger devices. In this paper, we will report an analysis of the fabrication, testing, and performance of an additively manufactured polymer composite heat exchanger. This heat exchanger utilizes a novel approach to achieve enhanced air-side heat transfer coefficients and overall mass reduction. This device relies on the Cross-Media Fiber concept where two fluid flows are thermally linked by high-conductivity fins, passing through a low-conductivity channel wall. Through this, the authors have met the required pressure containment, coefficient of performance, and heat flow rate targets, which were 28 psig, 100 and 150 W respectively. The advances that are discussed throughout this paper have allowed this novel polymer composite heat exchanger to be produced through a newly developed form of additive manufacturing that can potentially lead to the economical production of large scale Cross-Media Fiber heat exchangers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信