基于RFID和物联网技术的安全作业管理系统

Mujie Liu, Wei Yu, Ming-chong Xu
{"title":"基于RFID和物联网技术的安全作业管理系统","authors":"Mujie Liu, Wei Yu, Ming-chong Xu","doi":"10.1109/ICCAR49639.2020.9108042","DOIUrl":null,"url":null,"abstract":"As it was difficult for the State Grid Corporation of China (SGCC) to manage a large amount of safety equipment efficiently, resulting in the frequent occurrence of safety accidents caused by the quality of equipment. Therefore, this paper presents a design of a self-powered wireless communication radio frequency identification tag system based on the Si24R1. The system uses blockchain technology to provide a full-length, chain-like path for RFID big data to achieve data security management. Using low-power Si24R1 chips to make tags can extend the use time of tags and achieve full life cycle management of equipment. In addition, a transmission scheme was designed to reduce the packet loss rate, in this paper. Finally, the result showed that the device terminal received and processed information from the six tags simultaneously. According to calculations, this electronic tag could be used for up to three years. This system can be widely used for safe operation management, which can effectively reduce the investment of manpower and material resources.","PeriodicalId":412255,"journal":{"name":"2020 6th International Conference on Control, Automation and Robotics (ICCAR)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Security Job Management System Based on RFID and IOT Technology\",\"authors\":\"Mujie Liu, Wei Yu, Ming-chong Xu\",\"doi\":\"10.1109/ICCAR49639.2020.9108042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As it was difficult for the State Grid Corporation of China (SGCC) to manage a large amount of safety equipment efficiently, resulting in the frequent occurrence of safety accidents caused by the quality of equipment. Therefore, this paper presents a design of a self-powered wireless communication radio frequency identification tag system based on the Si24R1. The system uses blockchain technology to provide a full-length, chain-like path for RFID big data to achieve data security management. Using low-power Si24R1 chips to make tags can extend the use time of tags and achieve full life cycle management of equipment. In addition, a transmission scheme was designed to reduce the packet loss rate, in this paper. Finally, the result showed that the device terminal received and processed information from the six tags simultaneously. According to calculations, this electronic tag could be used for up to three years. This system can be widely used for safe operation management, which can effectively reduce the investment of manpower and material resources.\",\"PeriodicalId\":412255,\"journal\":{\"name\":\"2020 6th International Conference on Control, Automation and Robotics (ICCAR)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 6th International Conference on Control, Automation and Robotics (ICCAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAR49639.2020.9108042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th International Conference on Control, Automation and Robotics (ICCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAR49639.2020.9108042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于国家电网公司难以对大量安全设备进行高效管理,导致设备质量问题引发的安全事故频发。因此,本文设计了一种基于Si24R1的自供电无线通信射频识别标签系统。系统采用区块链技术,为RFID大数据提供全长、链式路径,实现数据安全管理。采用低功耗Si24R1芯片制作标签,可以延长标签的使用时间,实现设备的全生命周期管理。此外,本文还设计了一种降低丢包率的传输方案。最后,实验结果表明,设备终端能够同时接收和处理来自6个标签的信息。根据计算,这种电子标签可以使用长达三年。该系统可广泛用于安全运行管理,可有效减少人力、物力的投入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Security Job Management System Based on RFID and IOT Technology
As it was difficult for the State Grid Corporation of China (SGCC) to manage a large amount of safety equipment efficiently, resulting in the frequent occurrence of safety accidents caused by the quality of equipment. Therefore, this paper presents a design of a self-powered wireless communication radio frequency identification tag system based on the Si24R1. The system uses blockchain technology to provide a full-length, chain-like path for RFID big data to achieve data security management. Using low-power Si24R1 chips to make tags can extend the use time of tags and achieve full life cycle management of equipment. In addition, a transmission scheme was designed to reduce the packet loss rate, in this paper. Finally, the result showed that the device terminal received and processed information from the six tags simultaneously. According to calculations, this electronic tag could be used for up to three years. This system can be widely used for safe operation management, which can effectively reduce the investment of manpower and material resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信