k -匿名敏感属性多样性研究

X. Ren, J. Yang, Fengmei Wei
{"title":"k -匿名敏感属性多样性研究","authors":"X. Ren, J. Yang, Fengmei Wei","doi":"10.1109/DBTA.2010.5659106","DOIUrl":null,"url":null,"abstract":"The common way to protect privacy is to use K-anonymity in data publishing. This paper will analyse comprehensively the current research situation of K-anonymity model used to prevent privacy leaked in data publishing, we study the characteristics of sensitive attribute diversity of K-Anonymity, and propose CBK(L,K)-Anonymity algorithm in order to solve the problem of privacy information leakage in publishing the data, it can make anonymous data effectively resist background knowledge attack and homogeneity attack , and can solve diversity of sensitive attribute. In addition, we will extend our ideas for handling how to solve privacy information leakage problem by using CBK(L,K)-Anonymity algorithm in another paper.","PeriodicalId":320509,"journal":{"name":"2010 2nd International Workshop on Database Technology and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Diversity of Sensitive Attribute of K-Anonymity\",\"authors\":\"X. Ren, J. Yang, Fengmei Wei\",\"doi\":\"10.1109/DBTA.2010.5659106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The common way to protect privacy is to use K-anonymity in data publishing. This paper will analyse comprehensively the current research situation of K-anonymity model used to prevent privacy leaked in data publishing, we study the characteristics of sensitive attribute diversity of K-Anonymity, and propose CBK(L,K)-Anonymity algorithm in order to solve the problem of privacy information leakage in publishing the data, it can make anonymous data effectively resist background knowledge attack and homogeneity attack , and can solve diversity of sensitive attribute. In addition, we will extend our ideas for handling how to solve privacy information leakage problem by using CBK(L,K)-Anonymity algorithm in another paper.\",\"PeriodicalId\":320509,\"journal\":{\"name\":\"2010 2nd International Workshop on Database Technology and Applications\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Workshop on Database Technology and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DBTA.2010.5659106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Database Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DBTA.2010.5659106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

保护隐私的常用方法是在数据发布中使用k -匿名。本文综合分析了用于防止数据发布中隐私泄露的K-匿名模型的研究现状,研究了K-匿名敏感属性多样性的特点,提出了CBK(L,K)-匿名算法来解决数据发布中隐私信息泄露的问题,该算法能使匿名数据有效抵抗后台知识攻击和同质性攻击,并能解决敏感属性的多样性问题。此外,我们将在另一篇论文中扩展我们的思想,处理如何使用CBK(L,K)-匿名算法来解决隐私信息泄露问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Diversity of Sensitive Attribute of K-Anonymity
The common way to protect privacy is to use K-anonymity in data publishing. This paper will analyse comprehensively the current research situation of K-anonymity model used to prevent privacy leaked in data publishing, we study the characteristics of sensitive attribute diversity of K-Anonymity, and propose CBK(L,K)-Anonymity algorithm in order to solve the problem of privacy information leakage in publishing the data, it can make anonymous data effectively resist background knowledge attack and homogeneity attack , and can solve diversity of sensitive attribute. In addition, we will extend our ideas for handling how to solve privacy information leakage problem by using CBK(L,K)-Anonymity algorithm in another paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信