基于MOCA的非参数单调分类

N. Barile, A. Feelders
{"title":"基于MOCA的非参数单调分类","authors":"N. Barile, A. Feelders","doi":"10.1109/ICDM.2008.54","DOIUrl":null,"url":null,"abstract":"We describe a monotone classification algorithm called MOCA that attempts to minimize the mean absolute prediction error for classification problems with ordered class labels.We first find a monotone classifier with minimum L1 loss on the training sample, and then use a simple interpolation scheme to predict the class labels for attribute vectors not present in the training data.We compare MOCA to the ordinal stochastic dominance learner (OSDL), on artificial as well as real data sets. We show that MOCA often outperforms OSDL with respect to mean absolute prediction error.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Nonparametric Monotone Classification with MOCA\",\"authors\":\"N. Barile, A. Feelders\",\"doi\":\"10.1109/ICDM.2008.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a monotone classification algorithm called MOCA that attempts to minimize the mean absolute prediction error for classification problems with ordered class labels.We first find a monotone classifier with minimum L1 loss on the training sample, and then use a simple interpolation scheme to predict the class labels for attribute vectors not present in the training data.We compare MOCA to the ordinal stochastic dominance learner (OSDL), on artificial as well as real data sets. We show that MOCA often outperforms OSDL with respect to mean absolute prediction error.\",\"PeriodicalId\":252958,\"journal\":{\"name\":\"2008 Eighth IEEE International Conference on Data Mining\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Eighth IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2008.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

我们描述了一种称为MOCA的单调分类算法,该算法试图最小化具有有序类标签的分类问题的平均绝对预测误差。我们首先找到一个在训练样本上L1损失最小的单调分类器,然后使用一个简单的插值方案来预测训练数据中不存在的属性向量的类标签。我们将MOCA与有序随机优势学习(OSDL)在人工和真实数据集上进行了比较。我们表明MOCA在平均绝对预测误差方面通常优于OSDL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonparametric Monotone Classification with MOCA
We describe a monotone classification algorithm called MOCA that attempts to minimize the mean absolute prediction error for classification problems with ordered class labels.We first find a monotone classifier with minimum L1 loss on the training sample, and then use a simple interpolation scheme to predict the class labels for attribute vectors not present in the training data.We compare MOCA to the ordinal stochastic dominance learner (OSDL), on artificial as well as real data sets. We show that MOCA often outperforms OSDL with respect to mean absolute prediction error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信